-
-
Notifications
You must be signed in to change notification settings - Fork 5.4k
/
Copy pathtest_chat.py
873 lines (776 loc) · 28.5 KB
/
test_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
# imports for guided decoding tests
import json
import re
from typing import List
import jsonschema
import openai # use the official client for correctness check
import pytest
# using Ray for overall ease of process management, parallel requests,
# and debugging.
import ray
import torch
# downloading lora to test lora requests
from huggingface_hub import snapshot_download
from openai import BadRequestError
from ...utils import VLLM_PATH, RemoteOpenAIServer
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
# technically this needs Mistral-7B-v0.1 as base, but we're not testing
# generation quality here
LORA_NAME = "typeof/zephyr-7b-beta-lora"
TEST_SCHEMA = {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"age": {
"type": "integer"
},
"skills": {
"type": "array",
"items": {
"type": "string",
"maxLength": 10
},
"minItems": 3
},
"work history": {
"type": "array",
"items": {
"type": "object",
"properties": {
"company": {
"type": "string"
},
"duration": {
"type": "string"
},
"position": {
"type": "string"
}
},
"required": ["company", "position"]
}
}
},
"required": ["name", "age", "skills", "work history"]
}
TEST_REGEX = (r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}"
r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)")
TEST_CHOICE = [
"Python", "Java", "JavaScript", "C++", "C#", "PHP", "TypeScript", "Ruby",
"Swift", "Kotlin"
]
@pytest.fixture(scope="module")
def zephyr_lora_files():
return snapshot_download(repo_id=LORA_NAME)
@pytest.fixture(scope="module")
def ray_ctx():
ray.init(runtime_env={"working_dir": VLLM_PATH})
yield
ray.shutdown()
@pytest.fixture(scope="module")
def server(zephyr_lora_files, ray_ctx):
return RemoteOpenAIServer([
"--model",
MODEL_NAME,
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
# lora config below
"--enable-lora",
"--lora-modules",
f"zephyr-lora={zephyr_lora_files}",
f"zephyr-lora2={zephyr_lora_files}",
"--max-lora-rank",
"64",
"--max-cpu-loras",
"2",
"--max-num-seqs",
"128",
])
@pytest.fixture(scope="module")
def client(server):
return server.get_async_client()
@pytest.mark.asyncio
@pytest.mark.parametrize(
# first test base model, then test loras
"model_name",
[MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_no_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
chat_completion = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=5,
temperature=0.0,
logprobs=False)
choice = chat_completion.choices[0]
assert choice.logprobs is None
@pytest.mark.asyncio
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_zero_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
chat_completion = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=5,
temperature=0.0,
logprobs=True,
top_logprobs=0)
choice = chat_completion.choices[0]
assert choice.logprobs is not None
assert choice.logprobs.content is not None
assert len(choice.logprobs.content[0].top_logprobs) == 0
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_some_logprobs_chat(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
chat_completion = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=5,
temperature=0.0,
logprobs=True,
top_logprobs=5)
choice = chat_completion.choices[0]
assert choice.logprobs is not None
assert choice.logprobs.content is not None
assert len(choice.logprobs.content[0].top_logprobs) == 5
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_too_many_chat_logprobs(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# Default max_logprobs is 20, so this should raise an error
with pytest.raises((openai.BadRequestError, openai.APIError)):
stream = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=21,
stream=True)
async for chunk in stream:
...
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=30,
stream=False)
# the server should still work afterwards
chat_completion = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
stream=False)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_single_chat_session(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(model=model_name,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=5)
assert chat_completion.id is not None
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=37, total_tokens=47)
message = choice.message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize(
# just test 1 lora hereafter
"model_name",
[MODEL_NAME, "zephyr-lora"],
)
async def test_chat_streaming(client: openai.AsyncOpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
)
chunks: List[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name",
["HuggingFaceH4/zephyr-7b-beta", "zephyr-lora"],
)
async def test_chat_completion_stream_options(client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "What is the capital of France?"
}]
# Test stream=True, stream_options={"include_usage": False}
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
stream_options={"include_usage": False})
async for chunk in stream:
assert chunk.usage is None
# Test stream=True, stream_options={"include_usage": True}
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
stream_options={"include_usage": True})
async for chunk in stream:
if chunk.choices[0].finish_reason is None:
assert chunk.usage is None
else:
assert chunk.usage is None
final_chunk = await stream.__anext__()
assert final_chunk.usage is not None
assert final_chunk.usage.prompt_tokens > 0
assert final_chunk.usage.completion_tokens > 0
assert final_chunk.usage.total_tokens == (
final_chunk.usage.prompt_tokens +
final_chunk.usage.completion_tokens)
assert final_chunk.choices == []
# Test stream=False, stream_options={"include_usage": None}
with pytest.raises(BadRequestError):
await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=False,
stream_options={"include_usage": None})
# Test stream=False, stream_options={"include_usage": True}
with pytest.raises(BadRequestError):
await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=False,
stream_options={"include_usage": True})
# NOTE: Not sure why, but when I place this after `test_guided_regex_chat`
# (i.e. using the same ordering as in the Completions API tests), the test
# will fail on the second `guided_decoding_backend` even when I swap their order
# (ref: https://github.com/vllm-project/vllm/pull/5526#issuecomment-2173772256)
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_choice_chat(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE,
guided_decoding_backend=guided_decoding_backend))
choice1 = chat_completion.choices[0].message.content
assert choice1 in TEST_CHOICE
messages.append({"role": "assistant", "content": choice1})
messages.append({
"role": "user",
"content": "I disagree, pick another one"
})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
extra_body=dict(guided_choice=TEST_CHOICE,
guided_decoding_backend=guided_decoding_backend))
choice2 = chat_completion.choices[0].message.content
assert choice2 in TEST_CHOICE
assert choice1 != choice2
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_json_chat(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {TEST_SCHEMA}"
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=1000,
extra_body=dict(guided_json=TEST_SCHEMA,
guided_decoding_backend=guided_decoding_backend))
message = chat_completion.choices[0].message
assert message.content is not None
json1 = json.loads(message.content)
jsonschema.validate(instance=json1, schema=TEST_SCHEMA)
messages.append({"role": "assistant", "content": message.content})
messages.append({
"role":
"user",
"content":
"Give me another one with a different name and age"
})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=1000,
extra_body=dict(guided_json=TEST_SCHEMA,
guided_decoding_backend=guided_decoding_backend))
message = chat_completion.choices[0].message
assert message.content is not None
json2 = json.loads(message.content)
jsonschema.validate(instance=json2, schema=TEST_SCHEMA)
assert json1["name"] != json2["name"]
assert json1["age"] != json2["age"]
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_regex_chat(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example IP address with this regex: {TEST_REGEX}"
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX,
guided_decoding_backend=guided_decoding_backend))
ip1 = chat_completion.choices[0].message.content
assert ip1 is not None
assert re.fullmatch(TEST_REGEX, ip1) is not None
messages.append({"role": "assistant", "content": ip1})
messages.append({"role": "user", "content": "Give me a different one"})
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=20,
extra_body=dict(guided_regex=TEST_REGEX,
guided_decoding_backend=guided_decoding_backend))
ip2 = chat_completion.choices[0].message.content
assert ip2 is not None
assert re.fullmatch(TEST_REGEX, ip2) is not None
assert ip1 != ip2
@pytest.mark.asyncio
async def test_guided_decoding_type_error(client: openai.AsyncOpenAI):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
with pytest.raises(openai.BadRequestError):
_ = await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
extra_body=dict(guided_regex={
1: "Python",
2: "C++"
}))
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_guided_choice_chat_logprobs(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
"The best language for type-safe systems programming is "
}]
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=10,
logprobs=True,
top_logprobs=5,
extra_body=dict(guided_choice=TEST_CHOICE,
guided_decoding_backend=guided_decoding_backend))
assert chat_completion.choices[0].logprobs is not None
assert chat_completion.choices[0].logprobs.content is not None
top_logprobs = chat_completion.choices[0].logprobs.content[0].top_logprobs
# -9999.0 is the minimum logprob returned by OpenAI
for item in top_logprobs:
assert item.logprob >= -9999.0, f"Failed (top_logprobs={top_logprobs})"
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend",
["outlines", "lm-format-enforcer"])
async def test_named_tool_use(client: openai.AsyncOpenAI,
guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {TEST_SCHEMA}"
}]
# non-streaming
chat_completion = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": TEST_SCHEMA
}
}],
tool_choice={
"type": "function",
"function": {
"name": "dummy_function_name"
}
})
message = chat_completion.choices[0].message
assert len(message.content) == 0
json_string = message.tool_calls[0].function.arguments
json1 = json.loads(json_string)
jsonschema.validate(instance=json1, schema=TEST_SCHEMA)
messages.append({"role": "assistant", "content": json_string})
messages.append({
"role":
"user",
"content":
"Give me another one with a different name and age"
})
# streaming
stream = await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": TEST_SCHEMA
}
}],
tool_choice={
"type": "function",
"function": {
"name": "dummy_function_name"
}
},
stream=True)
output = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
assert delta.content is None or len(delta.content) == 0
if delta.tool_calls:
output.append(delta.tool_calls[0].function.arguments)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
json2 = json.loads("".join(output))
jsonschema.validate(instance=json2, schema=TEST_SCHEMA)
assert json1["name"] != json2["name"]
assert json1["age"] != json2["age"]
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", ["outlines"])
async def test_required_tool_use_not_yet_supported(
client: openai.AsyncOpenAI, guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {TEST_SCHEMA}"
}]
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": TEST_SCHEMA
}
}],
tool_choice="required")
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": TEST_SCHEMA
}
}],
tool_choice="auto")
@pytest.mark.asyncio
@pytest.mark.parametrize("guided_decoding_backend", ["outlines"])
async def test_inconsistent_tool_choice_and_tools(
client: openai.AsyncOpenAI, guided_decoding_backend: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role":
"user",
"content":
f"Give an example JSON for an employee profile that "
f"fits this schema: {TEST_SCHEMA}"
}]
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
max_tokens=1000,
tool_choice={
"type": "function",
"function": {
"name":
"dummy_function_name"
}
})
with pytest.raises(openai.BadRequestError):
await client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=1000,
tools=[{
"type": "function",
"function": {
"name": "dummy_function_name",
"description": "This is a dummy function",
"parameters": TEST_SCHEMA
}
}],
tool_choice={
"type": "function",
"function": {
"name": "nondefined_function_name"
}
})
@pytest.mark.asyncio
async def test_response_format_json_object(client: openai.AsyncOpenAI):
for _ in range(2):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role":
"user",
"content": ('what is 1+1? please respond with a JSON object, '
'the format is {"result": 2}')
}],
response_format={"type": "json_object"})
content = resp.choices[0].message.content
assert content is not None
loaded = json.loads(content)
assert loaded == {"result": 2}, loaded
@pytest.mark.asyncio
async def test_extra_fields(client: openai.AsyncOpenAI):
with pytest.raises(BadRequestError) as exc_info:
await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "system",
"content": "You are a helpful assistant.",
"extra_field": "0",
}], # type: ignore
temperature=0,
seed=0)
assert "extra_forbidden" in exc_info.value.message
@pytest.mark.asyncio
async def test_complex_message_content(client: openai.AsyncOpenAI):
resp = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role":
"user",
"content": [{
"type":
"text",
"text":
"what is 1+1? please provide the result without any other text."
}]
}],
temperature=0,
seed=0)
content = resp.choices[0].message.content
assert content == "2"
@pytest.mark.asyncio
async def test_custom_role(client: openai.AsyncOpenAI):
# Not sure how the model handles custom roles so we just check that
# both string and complex message content are handled in the same way
resp1 = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "my-custom-role",
"content": "what is 1+1?",
}], # type: ignore
temperature=0,
seed=0)
resp2 = await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "my-custom-role",
"content": [{
"type": "text",
"text": "what is 1+1?"
}]
}], # type: ignore
temperature=0,
seed=0)
content1 = resp1.choices[0].message.content
content2 = resp2.choices[0].message.content
assert content1 == content2
@pytest.mark.asyncio
async def test_long_seed(client: openai.AsyncOpenAI):
for seed in [
torch.iinfo(torch.long).min - 1,
torch.iinfo(torch.long).max + 1
]:
with pytest.raises(BadRequestError) as exc_info:
await client.chat.completions.create(
model=MODEL_NAME,
messages=[{
"role": "system",
"content": "You are a helpful assistant.",
}],
temperature=0,
seed=seed)
assert ("greater_than_equal" in exc_info.value.message
or "less_than_equal" in exc_info.value.message)