-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnudenet.py
executable file
·237 lines (218 loc) · 9.65 KB
/
nudenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/bin/env python
import os
import sys
import math
import time
import logging
import cv2
import numpy as np
from PIL import Image
log = logging.getLogger("sd")
session = None
detector = None
default_overlay = os.path.join(os.path.dirname(__file__), 'censored.png')
labels = [
"female-private-area",
"female-face",
"buttocks-bare",
"female-breast-bare",
"female-vagina",
"male-breast-bare",
"anus-bare",
"feet-bare",
"belly",
"feet",
"armpits",
"armpits-bare",
"male-face",
"belly-bare",
"male-penis",
"anus-area",
"female-breast",
"buttocks",
]
nsfw = [
"buttocks-bare",
"female-breast-bare",
"anus-bare",
"female-vagina",
"male-penis",
]
class NudeResult:
output: None
censor: list = []
detections: list = []
censored: list = []
class NudeDetector:
def __init__(self, providers=None, model=None):
import onnxruntime
from onnxruntime.capi import _pybind_state as C
global session # pylint: disable=global-statement
model = model or os.path.join(os.path.dirname(__file__), 'nudenet.onnx')
if session is None:
log.info(f'NudeNet load: model={model} providers={providers}')
session = onnxruntime.InferenceSession(model, providers=C.get_available_providers() if not providers else providers) # pylint: disable=no-member
model_inputs = session.get_inputs()
self.input_width = model_inputs[0].shape[2] # 320
self.input_height = model_inputs[0].shape[3] # 320
self.input_name = model_inputs[0].name
def read_image(self, image, target_size=320):
if type(image) == str:
img = cv2.imread(image)
else:
img = image
img_height, img_width = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
aspect = img_width / img_height
if img_height > img_width:
new_height = target_size
new_width = int(round(target_size * aspect))
else:
new_width = target_size
new_height = int(round(target_size / aspect))
resize_factor = math.sqrt((img_width**2 + img_height**2) / (new_width**2 + new_height**2))
img = cv2.resize(img, (new_width, new_height))
pad_x = target_size - new_width
pad_y = target_size - new_height
pad_top, pad_bottom = [int(i) for i in np.floor([pad_y, pad_y]) / 2]
pad_left, pad_right = [int(i) for i in np.floor([pad_x, pad_x]) / 2]
img = cv2.copyMakeBorder(img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT, value=[0, 0, 0])
img = cv2.resize(img, (target_size, target_size))
image_data = img.astype("float32") / 255.0 # normalize
image_data = np.transpose(image_data, (2, 0, 1))
image_data = np.expand_dims(image_data, axis=0)
return image_data, resize_factor, pad_left, pad_top
def postprocess(self, output, resize_factor, pad_left, pad_top, min_score):
outputs = np.transpose(np.squeeze(output[0]))
rows = outputs.shape[0]
boxes = []
scores = []
class_ids = []
for i in range(rows):
classes_scores = outputs[i][4:]
max_score = np.amax(classes_scores)
if max_score >= min_score:
class_id = np.argmax(classes_scores)
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
left = int(round((x - w * 0.5 - pad_left) * resize_factor))
top = int(round((y - h * 0.5 - pad_top) * resize_factor))
width = int(round(w * resize_factor))
height = int(round(h * resize_factor))
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45)
res = []
for i in indices: # pylint: disable=not-an-iterable
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
res.append({"label": labels[class_id], "id": class_id, "score": round(float(score), 2), "box": box})
return res
def pixelate(self, image, blocks=3):
(h, w) = image.shape[:2] # divide the input image into NxN blocks
xSteps = np.linspace(0, w, blocks + 1, dtype="int")
ySteps = np.linspace(0, h, blocks + 1, dtype="int")
for i in range(1, len(ySteps)):
for j in range(1, len(xSteps)):
startX = xSteps[j - 1]
startY = ySteps[i - 1]
endX = xSteps[j]
endY = ySteps[i]
roi = image[startY:endY, startX:endX]
(B, G, R) = [int(x) for x in cv2.mean(roi)[:3]]
cv2.rectangle(image, (startX, startY), (endX, endY), (B, G, R), -1)
return image
def overlay(self, background, foreground, x_offset=None, y_offset=None):
bg_h, bg_w, bg_channels = background.shape
fg_h, fg_w, fg_channels = foreground.shape
if bg_channels != 3:
log.error(f'NudeNet input image: channels={bg_channels} must be RGB')
return background
if fg_channels < 4: # make sure that overlay is rgba
log.warning('NudeNet overlay image does not have alpha channel')
foreground = cv2.cvtColor(foreground, cv2.COLOR_RGB2RGBA)
foreground[:, :, 3] = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY)
fg_h, fg_w, fg_channels = foreground.shape
if x_offset is None: # center by default
x_offset = (bg_w - fg_w) // 2
if y_offset is None:
y_offset = (bg_h - fg_h) // 2
w = min(fg_w, bg_w, fg_w + x_offset, bg_w - x_offset)
h = min(fg_h, bg_h, fg_h + y_offset, bg_h - y_offset)
if w < 1 or h < 1:
return background
bg_x = max(0, x_offset) # clip foreground and background images to the overlapping regions
bg_y = max(0, y_offset)
fg_x = max(0, x_offset * -1)
fg_y = max(0, y_offset * -1)
foreground = foreground[fg_y:fg_y + h, fg_x:fg_x + w]
background_subsection = background[bg_y:bg_y + h, bg_x:bg_x + w]
foreground_colors = foreground[:, :, :3] # separate alpha and color channels from the foreground image
alpha_channel = foreground[:, :, 3] / 255 # 0-255 => 0.0-1.0
alpha_mask = alpha_mask = alpha_channel[:,:,np.newaxis] # construct an alpha_mask that matches the image shape
composite = background_subsection * (1 - alpha_mask) + foreground_colors * alpha_mask # combine the background with the overlay image weighted by alpha
background[bg_y:bg_y + h, bg_x:bg_x + w] = composite # overwrite the section of the background image that has been updated
return background
def detect(self, image, min_score):
try:
preprocessed_image, resize_factor, pad_left, pad_top = self.read_image(image, self.input_width)
outputs = session.run(None, {self.input_name: preprocessed_image})
res = self.postprocess(outputs, resize_factor, pad_left, pad_top, min_score)
except Exception as e:
log.error(f'NudeNet: {e}')
return []
return res
def censor(self, image, min_score=0.2, censor=None, method='pixelate', blocks=3, overlay=None):
if type(image) == str:
image = cv2.imread(image) # input is image path
else:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # input is pil image
nude = NudeResult()
nude.censor = censor or []
nude.detections = self.detect(image, min_score)
nude.censored = [d for d in nude.detections if d["label"] in nude.censor]
for d in nude.censored:
box = d["box"]
x, y, w, h = box[0], box[1], box[2], box[3]
area = image[y: y+h, x: x+w]
if method == 'pixelate':
image[y: y+h, x: x+w] = self.pixelate(area, blocks=blocks)
elif method == 'blur':
image[y: y+h, x: x+w] = cv2.blur(area, (blocks, blocks))
elif method == 'gaussian blur':
image[y: y+h, x: x+w] = cv2.GaussianBlur(area, (blocks, blocks), 0)
elif method == 'median blur':
image[y: y+h, x: x+w] = cv2.medianBlur(area, blocks)
elif method == 'block':
image[y: y+h, x: x+w] = (0, 0, 0)
elif method == 'image':
if overlay is None or overlay == '':
overlay = default_overlay
if not os.path.exists(overlay):
log.error(f'NudeNet overlay image not found: file={overlay}')
overlay = default_overlay
pasty = cv2.imread(overlay, cv2.IMREAD_UNCHANGED)
pasty = cv2.resize(pasty, (w, h))
image = self.overlay(image, pasty, x, y)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
nude.output = Image.fromarray(image)
return nude
def cli():
global detector # pylint: disable=global-statement
sys.argv.pop(0)
if len(sys.argv) == 0:
log.error('nudenet: no files specified')
for fn in sys.argv:
t0 = time.time()
pil = Image.open(fn)
if detector is None:
detector = NudeDetector(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
nudes = detector.censor(image=pil, censor=['female breast bare', 'female genitalia bare'], min_score=0.2, method='pixelate')
t1 = time.time()
log.info(vars(nudes))
f = os.path.splitext(fn)[0] + '_censored.jpg'
nudes.output.save(f)
log.info(f'nudenet: input={fn} output={f} time={t1-t0:.2f}s')
if __name__ == "__main__":
cli()