diff --git a/.history/index_20240713160047.html b/.history/index_20240713160047.html new file mode 100644 index 0000000..6242781 --- /dev/null +++ b/.history/index_20240713160047.html @@ -0,0 +1,189 @@ + + +
+ + + +CoreRec excels in node recommendations, model training, and graph visualizations, + making it the ultimate tool for data scientists and researchers.
+ + + Contribute + +import core_rec as cr
+import vish_graphs as vg
+import numpy as np
+
+
+file_path=vg.generaterandom_graph(100,seed=221)
+graph_dataset = cs.GraphDataset(adj_matrix)
+data_loader = DataLoader(graph_dataset, batch_size=5, shuffle=True)
+adj_matrix = np.loadtxt(file_path,delimiter=',')
+model = cs.GraphTransformer(
+ num_layers, d_model, num_heads, d_feedforward, input_dim)
+ top_nodes = vg.find_top_nodes(adj_matrix, num_nodes=5)
+
+num_epochs = 10
+cs.train_model(model, data_loader, criterion, optimizer, num_epochs)
+
+
+node_index = 2 #target node
+recommended_nodes = cs.predict(model, adj_matrix, node_index, top_k=5, threshold=0.5)
+print(f"Recommended nodes for node {node_index}: {recommended_nodes}")
+
+ CoreRec excels in node recommendations, model training, and graph visualizations, + making it the ultimate tool for data scientists and researchers.
+ + + Contribute + +import core_rec as cr
+import vish_graphs as vg
+import numpy as np
+
+
+file_path=vg.generaterandom_graph(100,seed=221)
+graph_dataset = cs.GraphDataset(adj_matrix)
+data_loader = DataLoader(graph_dataset, batch_size=5, shuffle=True)
+adj_matrix = np.loadtxt(file_path,delimiter=',')
+model = cs.GraphTransformer(
+ num_layers, d_model, num_heads, d_feedforward, input_dim)
+ top_nodes = vg.find_top_nodes(adj_matrix, num_nodes=5)
+
+num_epochs = 10
+cs.train_model(model, data_loader, criterion, optimizer, num_epochs)
+
+
+node_index = 2 #target node
+recommended_nodes = cs.predict(model, adj_matrix, node_index, top_k=5, threshold=0.5)
+print(f"Recommended nodes for node {node_index}: {recommended_nodes}")
+
+ CoreRec excels in node recommendations, model training, and graph visualizations, + making it the ultimate tool for data scientists and researchers.
+ + + Contribute + +import core_rec as cr
+import vish_graphs as vg
+import numpy as np
+
+
+file_path=vg.generaterandom_graph(100,seed=221)
+graph_dataset = cs.GraphDataset(adj_matrix)
+data_loader = DataLoader(graph_dataset, batch_size=5, shuffle=True)
+adj_matrix = np.loadtxt(file_path,delimiter=',')
+model = cs.GraphTransformer(
+ num_layers, d_model, num_heads, d_feedforward, input_dim)
+ top_nodes = vg.find_top_nodes(adj_matrix, num_nodes=5)
+
+num_epochs = 10
+cs.train_model(model, data_loader, criterion, optimizer, num_epochs)
+
+
+node_index = 2 #target node
+recommended_nodes = cs.predict(model, adj_matrix, node_index, top_k=5, threshold=0.5)
+print(f"Recommended nodes for node {node_index}: {recommended_nodes}")
+
+ CoreRec excels in node recommendations, model training, and graph visualizations, + making it the ultimate tool for data scientists and researchers.
+ + + Contribute + +import core_rec as cr
+import vish_graphs as vg
+import numpy as np
+
+
+file_path=vg.generaterandom_graph(100,seed=221)
+graph_dataset = cs.GraphDataset(adj_matrix)
+data_loader = DataLoader(graph_dataset, batch_size=5, shuffle=True)
+adj_matrix = np.loadtxt(file_path,delimiter=',')
+model = cs.GraphTransformer(
+ num_layers, d_model, num_heads, d_feedforward, input_dim)
+ top_nodes = vg.find_top_nodes(adj_matrix, num_nodes=5)
+
+num_epochs = 10
+cs.train_model(model, data_loader, criterion, optimizer, num_epochs)
+
+
+node_index = 2 #target node
+recommended_nodes = cs.predict(model, adj_matrix, node_index, top_k=5, threshold=0.5)
+print(f"Recommended nodes for node {node_index}: {recommended_nodes}")
+
+ CoreRec excels in node recommendations, model training, and graph visualizations, + making it the ultimate tool for data scientists and researchers.
+ + + Contribute + +import core_rec as cr
+import vish_graphs as vg
+import numpy as np
+
+
+file_path=vg.generaterandom_graph(100,seed=221)
+graph_dataset = cs.GraphDataset(adj_matrix)
+data_loader = DataLoader(graph_dataset, batch_size=5, shuffle=True)
+adj_matrix = np.loadtxt(file_path,delimiter=',')
+model = cs.GraphTransformer(
+ num_layers, d_model, num_heads, d_feedforward, input_dim)
+ top_nodes = vg.find_top_nodes(adj_matrix, num_nodes=5)
+
+num_epochs = 10
+cs.train_model(model, data_loader, criterion, optimizer, num_epochs)
+
+
+node_index = 2 #target node
+recommended_nodes = cs.predict(model, adj_matrix, node_index, top_k=5, threshold=0.5)
+print(f"Recommended nodes for node {node_index}: {recommended_nodes}")
+
+ CoreRec excels in node recommendations, model training, and graph visualizations, + making it the ultimate tool for data scientists and researchers.
+ + + Contribute + +import core_rec as cr
+import vish_graphs as vg
+import numpy as np
+
+
+file_path=vg.generaterandom_graph(100,seed=221)
+graph_dataset = cs.GraphDataset(adj_matrix)
+data_loader = DataLoader(graph_dataset, batch_size=5, shuffle=True)
+adj_matrix = np.loadtxt(file_path,delimiter=',')
+model = cs.GraphTransformer(
+ num_layers, d_model, num_heads, d_feedforward, input_dim)
+ top_nodes = vg.find_top_nodes(adj_matrix, num_nodes=5)
+
+num_epochs = 10
+cs.train_model(model, data_loader, criterion, optimizer, num_epochs)
+
+
+node_index = 2 #target node
+recommended_nodes = cs.predict(model, adj_matrix, node_index, top_k=5, threshold=0.5)
+print(f"Recommended nodes for node {node_index}: {recommended_nodes}")
+
+