forked from xArm-Developer/xArm-CPLUS-SDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
8001-force_tech.cc
77 lines (64 loc) · 2.53 KB
/
8001-force_tech.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/**
* Software License Agreement (MIT License)
*
* Copyright (c) 2022, UFACTORY, Inc.
*
* All rights reserved.
*
* @author Vinman <vinman.wen@ufactory.cc> <vinman.cub@gmail.com>
*/
#include "xarm/wrapper/xarm_api.h"
int main(int argc, char **argv) {
if (argc < 2) {
printf("Please enter IP address\n");
return 0;
}
std::string port(argv[1]);
XArmAPI *arm = new XArmAPI(port);
sleep_milliseconds(500);
if (arm->error_code != 0) arm->clean_error();
if (arm->warn_code != 0) arm->clean_warn();
arm->motion_enable(true);
arm->set_mode(0);
arm->set_state(0);
sleep_milliseconds(500);
printf("=========================================\n");
// Hand guided Cartesian jogging can be achieved by setting zero stiffness to target axis
// set teach parmeters
// Attention: for M, smaller value means less effort to drive the arm, but may also be less stable, please be careful.
// x/y/z equivalent mass; range: 0.02 ~ 1 kg
// Rx/Ry/Rz equivalent moment of inertia, range: 1e-4 ~ 0.01 (Kg*m^2)
float M[6] = { 0.05, 0.05, 0.05, 0.0005, 0.0005, 0.0005 }; // M => {x, y, z, Rx, Ry, Rz}
// x/y/z linear stiffness coefficient, range: 0 ~ 2000 (N/m)
// Rx/Ry/Rz rotational stiffness coefficient, range: 0 ~ 20 (Nm/rad)
float K[6] = { 0 }; // K => {x, y, z, Rx, Ry, Rz}
float B[6] = { 0 };
int coord = 0; // 0 : base , 1 : tool
int c_axis[6] = { 0, 0, 1, 0, 0, 0 }; // compliant axis: z
int ret;
ret = arm->set_impedance_mbk(M, K, B);
printf("set_impedance_mbk, ret=%d\n", ret);
ret = arm->set_impedance_config(coord, c_axis);
printf("set_impedance_config, ret=%d\n", ret);
// enable ft sensor communication
ret = arm->ft_sensor_enable(1);
printf("ft_sensor_enable, ret=%d\n", ret);
// will overwrite previous sensor zero and payload configuration
ret = arm->ft_sensor_set_zero(); // remove this if zero_offset and payload already identified & compensated!
printf("ft_sensor_set_zero, ret=%d\n", ret);
sleep_milliseconds(200); // wait for writting zero operation to take effect, do not remove
// 1: impendance control mode
ret = arm->ft_sensor_app_set(1);
printf("ft_sensor_app_set, ret=%d\n", ret);
// will start after set_state(0)
ret = arm->set_state(0);
// You can drag and teach robot along compliant axis now
sleep_milliseconds(1000 * 10);
// remember to reset ft_sensor_app when finished
ret = arm->ft_sensor_app_set(0);
printf("ft_sensor_app_set, ret=%d\n", ret);
ret = arm->ft_sensor_enable(0);
printf("ft_sensor_enable, ret=%d\n", ret);
arm->disconnect();
return 0;
}