forked from alexbeutel/FlexiFaCT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDenseTensor.java
65 lines (55 loc) · 1.13 KB
/
DenseTensor.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import java.lang.*;
import java.io.*;
import java.util.*;
import java.util.zip.*;
import java.text.*;
public class DenseTensor implements Tensor {
int N;
int M;
int P;
float[] data; // Keep one dimensional for memory efficiency
int iter;
public DenseTensor(int n, int m) {
this(n,m,1);
}
public DenseTensor(int n, int m, int p) {
N = n;
M = m;
P = p;
data = new float[N*M*P];
iter = -1;
reset();
}
private int getIndex(int i, int j, int k) {
return (i * M + j) * P + k;
}
public float get(int i, int j) {
return get(i,j,0);
}
public float get(int i, int j, int k) {
return data[getIndex(i,j,k)];
}
public void set(int i, int j, float value) {
set(i,j,0,value);
}
public void set(int i, int j, int k, float value) {
data[getIndex(i,j,k)] = value;
}
public void zero() {
for(int i = 0; i < N*M*P; i++) {
data[i] = 0.0f;
}
}
public void reset(float mean) {
Random r = new Random();
for(int i = 0; i < N*M*P; i++) {
data[i] = (float)(r.nextGaussian()/2.0f + mean);
if(Float.isNaN(data[i])) {
System.out.println("NaN Error on Reset");
}
}
}
public void reset() {
reset(0);
}
}