-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_config.yml
70 lines (65 loc) · 1.53 KB
/
training_config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
sensor_combinations:
- acc-X
- acc-Y
- acc-Z
- gyr-X
- gyr-Y
- gyr-Z
segmentation:
window: !!float 1.0
overlap: !!float 0.75
# Based on the NIOSH Equation
data_labels:
Crate-W2: !!int 0
Crate-W5: !!int 0
Crate-W10: !!int 0
Crate-W15: !!int 0
Crate-W20: !!int 1
Crate-W30: !!int 1
CardboardBox-W2: !!int 0
CardboardBox-W5: !!int 0
CardboardBox-W10: !!int 0
CardboardBox-W15: !!int 0
CardboardBox-W20: !!int 1
CardboardBox-W30: !!int 1
# Model parameters for training - Based on lib/models.py
model_params:
LogisticRegression:
class_weight: balanced
max_iter: !!int 5000
n_jobs: !!int 4
tol: !!float 0.0001
DecisionTreeClassifier:
class_weight: balanced
max_depth: !!int 50
min_samples_leaf: !!int 20
min_samples_split: !!int 20
KNeighborsClassifier:
n_neighbors: !!int 10
weights: uniform
SVC:
class_weight: balanced
kernel: poly
tol: !!float 1e-07
BaggingClassifier:
n_estimators: !!int 100
RandomForestClassifier:
class_weight: balanced
max_depth: !!int 50
min_samples_leaf: !!int 1
min_samples_split: !!int 100
n_estimators: !!int 100
MLPClassifier:
hidden_layer_sizes: !!python/tuple [50, 20]
max_iter: !!int 500
AdaBoostClassifier:
base_estimator: !!python/BaggingClassifier {n_estimators: 100}
n_estimators: 500
learning_rate: 0.001
# Sensor(s) for training based on location
tr_sensor_locations:
- L1
- L2
- L3
# Trained model save location
model_save_directory: trained_models