-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_images.py
274 lines (208 loc) · 9.36 KB
/
run_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from adbench.baseline.PyOD import PYOD
from baselines.dagmm import DAGMM
from baselines.drocc import DROCC
from baselines.normalizing_flow import FlowModel
from baselines.goad import GOAD
from baselines.icl import ICL
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import random
import argparse
import numpy as np
from vision.dte_cv import DTECategorical, DTEInverseGamma
from diffusion.non_param_dte import DTENonParametric
from vision.ddpm_cv import DDPM
import os
import pandas as pd
import torch
import time
from adbench.myutils import Utils
import sklearn.metrics as skm
from data_generator import DataGenerator
def get_MNIST(anomaly_class = 0):
transform = transforms.Compose([transforms.Resize(32), transforms.ToTensor(), transforms.Normalize((0.0,), (0.25,))])
dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
i = anomaly_class
normal_data = [data for data in dataset if data[1] != i] # Assuming "airplane" class as "normal"
anomaly_data = [data for data in dataset if data[1] == i]
# # Assigning labels
normal_data = [(x[0], 0) for x in normal_data]
anomaly_data = [(x[0], 1) for x in anomaly_data]
# Combine and shuffle
final_data = normal_data + anomaly_data
random.shuffle(final_data)
data = list(zip(*final_data))
return torch.stack(list(data[0])).numpy(), np.array(list(data[1]))
def get_CIFAR10(anomaly_class = 0):
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.0, 0.0, 0.0), (0.5, 0.5, 0.5))])
dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
i = anomaly_class
normal_data = [data for data in dataset if data[1] != i] # Assuming "airplane" class as "normal"
anomaly_data = [data for data in dataset if data[1] == i]
# # Assigning labels
normal_data = [(x[0], 0) for x in normal_data]
anomaly_data = [(x[0], 1) for x in anomaly_data]
# Combine and shuffle
final_data = normal_data + anomaly_data
random.shuffle(final_data)
data = list(zip(*final_data))
return torch.stack(list(data[0])).numpy(), np.array(list(data[1]))
def get_VISA(dataset):
folder = os.path.join("VisA_pytorch", "1cls")
train_folder = os.path.join(folder, dataset, 'train')
test_folder = os.path.join(folder, dataset, 'test')
transform = transforms.Compose([transforms.Resize(320, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(300),
transforms.ToTensor(),
transforms.Normalize((0.0, 0.0, 0.0), (0.25, 0.25, 0.25)),
])
dataset = ImageFolder(root=train_folder, transform=transform)
train_loader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=2, drop_last=False)
inputs = []
labels = []
with torch.no_grad():
for i, d in enumerate(train_loader):
X, y = d
inputs.append(X)
labels.append(y)
dataset = ImageFolder(root=test_folder, transform=transform)
test_loader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=2, drop_last=False)
with torch.no_grad():
for i, d in enumerate(test_loader):
X, y = d
inputs.append(X)
labels.append(1-y)
X = np.vstack(inputs)
y = np.hstack(labels)
return X, y
def low_density_anomalies(test_log_probs, num_anomalies):
""" Helper function for the F1-score, selects the num_anomalies lowest values of test_log_prob
"""
anomaly_indices = np.argpartition(test_log_probs, num_anomalies-1)[:num_anomalies]
preds = np.zeros(len(test_log_probs))
preds[anomaly_indices] = 1
return preds
def main(args):
seed = args.seed
dir = './results/images/'
if not os.path.exists(dir):
os.makedirs(dir)
utils = Utils() # utils function
utils.set_seed(seed)
visa_list = ['candle', 'capsules', 'cashew', 'chewinggum', 'fryum', 'macaroni1', 'macaroni2', 'pcb1', 'pcb2', 'pcb3', 'pcb4', 'pipe_fryum']
# Get the datasets from ADBench
dataset_list = ["CIFAR10_" + str(i) for i in range(10)]
dataset_list.extend(["MNIST_" + str(i) for i in range(10)])
dataset_list.extend(visa_list)
dataset = []
model_dict = {}
# Select models
# for _ in ['IForest', 'OCSVM', 'COPOD', 'ECOD', 'FeatureBagging', 'HBOS', 'KNN', 'LODA',
# 'LOF', 'MCD', 'PCA', 'DeepSVDD']:
# model_dict[_] = PYOD
# model_dict['DAGMM'] = DAGMM
# model_dict['DROCC'] = DROCC
# model_dict['GOAD'] = GOAD
# model_dict['ICL'] = ICL
# model_dict['PlanarFlow'] = FlowModel
model_dict['DDPM'] = DDPM
# model_dict['DTPM-NP'] = DTENonParametric
# model_dict['DTPM-IG'] = DTEInverseGamma
model_dict['DTPM-C'] = DTECategorical
model_dict['KNN'] = PYOD
# Create dataframes to save the results
aucroc_name = dir + str(seed) + "_AUCROC.csv"
aucpr_name = dir + str(seed) + "_AUCPR.csv"
f1_name = dir + str(seed) + "_AUCF1.csv"
train_name = dir + str(seed) + "_TrainTime.csv"
inference_name = dir + str(seed) + "_InferenceTime.csv"
try:
df_AUCROC = pd.read_csv(aucroc_name, index_col = 0)
except:
df_AUCROC = pd.DataFrame(data=None)
try:
df_AUCPR = pd.read_csv(aucpr_name, index_col = 0)
except:
df_AUCPR = pd.DataFrame(data=None)
try:
df_F1 = pd.read_csv(f1_name, index_col = 0)
except:
df_F1 = pd.DataFrame(data=None)
try:
df_train = pd.read_csv(train_name, index_col = 0)
except:
df_train = pd.DataFrame(data=None)
try:
df_inference = pd.read_csv(inference_name, index_col = 0)
except:
df_inference = pd.DataFrame(data=None)
for dataset in dataset_list:
print(dataset)
if "MNIST" in dataset:
X, y = get_MNIST(int(dataset.split("_")[1]))
test_size = 0.2
elif "CIFAR10" in dataset:
X, y = get_CIFAR10(int(dataset.split("_")[1]))
test_size = 0.2
elif dataset in visa_list:
X, y = get_VISA(dataset)
test_size = 0.1
data = {}
if X.shape[1] == 1:
X = X.repeat(3, 1) # extent the channel if the picture is not colorful
indices = np.arange(len(X))
normal_indices = indices[y == 0]
anomaly_indices = indices[y == 1]
train_size = round((1-test_size) * normal_indices.size)
train_indices, test_indices = normal_indices[:train_size], normal_indices[train_size:]
test_indices = np.append(test_indices, anomaly_indices)
data['X_train'] = X[train_indices]
data['y_train'] = y[train_indices]
data['X_test'] = X[test_indices]
data['y_test'] = y[test_indices]
for name, clf in model_dict.items():
# model initialization
clf = clf(seed=seed, model_name=name)
print(name)
if name == "KNN" or name == "DTE-NP":
data['X_train'] = data['X_train'].reshape((data['X_train'].shape[0], -1))
data['X_test'] = data['X_test'].reshape((data['X_test'].shape[0], -1))
# training, for unsupervised models the y label will be discarded
start_time = time.time()
clf = clf.fit(X_train=data['X_train'], y_train=data['y_train'])
end_time = time.time(); time_fit = end_time - start_time
start_time = time.time()
if name == 'DAGMM':
score = clf.predict_score(data['X_train'], data['X_test'])
else:
score = clf.predict_score(data['X_test'])
end_time = time.time(); time_inference = end_time - start_time
indices = np.arange(len(data['y_test']))
p = low_density_anomalies(-score, len(indices[data['y_test']==1]))
f1_score = skm.f1_score(data['y_test'], p)
print('F1 score: ' + str(f1_score))
df_F1.loc[dataset, name] = f1_score
df_F1.to_csv(f1_name)
inds = np.where(np.isnan(score))
score[inds] = 0
result = utils.metric(y_true=data['y_test'], y_score=score)
print('AUCROC: ' + str(result['aucroc']))
# save results
df_AUCROC.loc[dataset, name] = result['aucroc']
df_AUCPR.loc[dataset, name] = result['aucpr']
df_train.loc[dataset, name] = time_fit
df_inference.loc[dataset, name] = time_inference
df_AUCROC.to_csv(aucroc_name)
df_AUCPR.to_csv(aucpr_name)
df_train.to_csv(train_name)
df_train.to_csv(train_name)
df_inference.to_csv(inference_name)
df_inference.to_csv(inference_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Settings')
parser.add_argument('--seed', type=int,
default=42, help='random seed')
args = parser.parse_args()
main(args)