-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_generator.py
208 lines (172 loc) · 8.76 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""
File from ADBench https://github.com/Minqi824/ADBench.git
that was modified to integrate the new semi-supervised setting
and add more flexibility.
Copyright (c) 2022, Mickey (Minqi)
All rights reserved.
"""
import numpy as np
import pandas as pd
import random
import os
from math import ceil
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from adbench.myutils import Utils
import pkg_resources
# Path to adbench datasets
DATA_PATH = pkg_resources.resource_filename('adbench', 'datasets/')
# currently, data generator only supports for generating the binary classification datasets
class DataGenerator():
def __init__(self, seed:int=42, dataset:str=None, test_size:float=0.3,
generate_duplicates=True, n_samples_threshold=1000, normal=False):
'''
:param seed: seed for reproducible results
:param dataset: specific the dataset name
:param test_size: testing set size
:param generate_duplicates: whether to generate duplicated samples when sample size is too small
:param n_samples_threshold: threshold for generating the above duplicates, if generate_duplicates is False, then datasets with sample size smaller than n_samples_threshold will be dropped
'''
self.seed = seed
self.dataset = dataset
self.test_size = test_size
self.generate_duplicates = generate_duplicates
self.n_samples_threshold = n_samples_threshold
self.normal = normal
# dataset list
self.dataset_list_classical = [os.path.splitext(_)[0] for _ in os.listdir(DATA_PATH + 'Classical')
if os.path.splitext(_)[1] == '.npz'] # classical AD datasets
self.dataset_list_cv = [os.path.splitext(_)[0] for _ in os.listdir(DATA_PATH + 'CV_by_ResNet18')
if os.path.splitext(_)[1] == '.npz'] # CV datasets
self.dataset_list_nlp = [os.path.splitext(_)[0] for _ in os.listdir(DATA_PATH + 'NLP_by_BERT')
if os.path.splitext(_)[1] == '.npz'] # NLP datasets
# myutils function
self.utils = Utils()
'''
Here we also consider the robustness of baseline models, where three types of noise can be added
1. Duplicated anomalies, which should be added to training and testing set, respectively
2. Irrelevant features, which should be added to both training and testing set
3. Annotation errors (Label flips), which should be only added to the training set
'''
def add_duplicated_anomalies(self, X, y, duplicate_times:int):
if duplicate_times <= 1:
pass
else:
# index of normal and anomaly data
idx_n = np.where(y==0)[0]
idx_a = np.where(y==1)[0]
# generate duplicated anomalies
idx_a = np.random.choice(idx_a, int(len(idx_a) * duplicate_times))
idx = np.append(idx_n, idx_a); random.shuffle(idx)
X = X[idx]; y = y[idx]
return X, y
def generator(self, X=None, y=None, scale=True,
la=None, at_least_one_labeled=False,
noise_type=None, duplicate_times:int=2, max_size=10000):
'''
la: labeled anomalies, can be either the ratio of labeled anomalies or the number of labeled anomalies
at_least_one_labeled: whether to guarantee at least one labeled anomalies in the training set
'''
# set seed for reproducible results
self.utils.set_seed(self.seed)
# load dataset
if self.dataset is None:
assert X is not None and y is not None, "For customized dataset, you should provide the X and y!"
else:
if self.dataset in self.dataset_list_classical:
data = np.load(os.path.join(DATA_PATH, 'Classical', self.dataset + '.npz'), allow_pickle=True)
elif self.dataset in self.dataset_list_cv:
data = np.load(os.path.join(DATA_PATH, 'CV_by_ResNet18', self.dataset + '.npz'), allow_pickle=True)
elif self.dataset in self.dataset_list_nlp:
data = np.load(os.path.join(DATA_PATH, 'NLP_by_BERT', self.dataset + '.npz'), allow_pickle=True)
else:
raise NotImplementedError
X = data['X']
y = data['y']
# number of labeled anomalies in the original data
if type(la) == float:
if at_least_one_labeled:
n_labeled_anomalies = ceil(sum(y) * (1 - self.test_size) * la)
else:
n_labeled_anomalies = int(sum(y) * (1 - self.test_size) * la)
elif type(la) == int:
n_labeled_anomalies = la
else:
raise NotImplementedError
# if the dataset is too small, generating duplicate smaples up to n_samples_threshold
if len(y) < self.n_samples_threshold and self.generate_duplicates:
print(f'generating duplicate samples for dataset {self.dataset}...')
self.utils.set_seed(self.seed)
idx_duplicate = np.random.choice(np.arange(len(y)), self.n_samples_threshold, replace=True)
X = X[idx_duplicate]
y = y[idx_duplicate]
# if the dataset is too large, subsampling for considering the computational cost
if len(y) > max_size:
print(f'subsampling for dataset {self.dataset}...')
self.utils.set_seed(self.seed)
idx_sample = np.random.choice(np.arange(len(y)), max_size, replace=False)
X = X[idx_sample]
y = y[idx_sample]
# show the statistic
self.utils.data_description(X=X, y=y)
# spliting the current data to the training set and testing set
if not self.normal:
if self.test_size == 0:
X_train = X.copy()
y_train = y.copy()
X_test = X.copy()
y_test = y.copy()
else:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.test_size, shuffle=True, stratify=y)
else:
indices = np.arange(len(X))
normal_indices = indices[y == 0]
anomaly_indices = indices[y == 1]
train_size = round((1-self.test_size) * normal_indices.size)
train_indices, test_indices = normal_indices[:train_size], normal_indices[train_size:]
test_indices = np.append(test_indices, anomaly_indices)
X_train = X[train_indices]
y_train = y[train_indices]
X_test = X[test_indices]
y_test = y[test_indices]
# standard scaling
if scale:
scaler = StandardScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
col_mean = np.nanmean(X_train, axis=0)
inds = np.where(np.isnan(col_mean))
col_mean[inds] = 0
inds = np.where(np.isnan(X_train))
X_train[inds] = np.take(col_mean, inds[1])
col_mean = np.nanmean(X_test, axis=0)
inds = np.where(np.isnan(col_mean))
col_mean[inds] = 0
inds = np.where(np.isnan(X_test))
X_test[inds] = np.take(col_mean, inds[1])
# idx of normal samples and unlabeled/labeled anomalies
idx_normal = np.where(y_train == 0)[0]
idx_anomaly = np.where(y_train == 1)[0]
if type(la) == float:
if at_least_one_labeled:
idx_labeled_anomaly = np.random.choice(idx_anomaly, ceil(la * len(idx_anomaly)), replace=False)
else:
idx_labeled_anomaly = np.random.choice(idx_anomaly, int(la * len(idx_anomaly)), replace=False)
elif type(la) == int:
if la > len(idx_anomaly):
raise AssertionError(f'the number of labeled anomalies are greater than the total anomalies: {len(idx_anomaly)} !')
else:
idx_labeled_anomaly = np.random.choice(idx_anomaly, la, replace=False)
else:
raise NotImplementedError
idx_unlabeled_anomaly = np.setdiff1d(idx_anomaly, idx_labeled_anomaly)
# whether to remove the anomaly contamination in the unlabeled data
if noise_type == 'anomaly_contamination':
idx_unlabeled_anomaly = self.remove_anomaly_contamination(idx_unlabeled_anomaly, contam_ratio)
# unlabel data = normal data + unlabeled anomalies (which is considered as contamination)
idx_unlabeled = np.append(idx_normal, idx_unlabeled_anomaly)
del idx_anomaly, idx_unlabeled_anomaly
# the label of unlabeled data is 0, and that of labeled anomalies is 1
y_train[idx_unlabeled] = 0
y_train[idx_labeled_anomaly] = 1
return {'X_train':X_train, 'y_train':y_train, 'X_test':X_test, 'y_test':y_test}