-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_clf.py
152 lines (130 loc) · 5.68 KB
/
main_clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
## Utilities
import time
import os
import logging
import yaml
from timeit import default_timer as timer
## Libraries
import numpy as np
from box import box_from_file
from pathlib import Path
## Torch
import torch
import torch.nn as nn
from torch.utils import data
import torch.optim as optim
## Custom Imports
from utils.logger import setup_logs
from utils.seed import set_seed
from utils.train import train_clf, snapshot
from utils.validation import validation_clf
from utils.dataset import SentimentAnalysis
from model.models import CPCv1, TxtClassifier
class ScheduledOptim(object):
"""A simple wrapper class for learning rate scheduling"""
def __init__(self, optimizer, n_warmup_steps):
self.optimizer = optimizer
self.d_model = 128
self.n_warmup_steps = n_warmup_steps
self.n_current_steps = 0
self.delta = 1
def state_dict(self):
self.optimizer.state_dict()
def step(self):
"""Step by the inner optimizer"""
self.optimizer.step()
def zero_grad(self):
"""Zero out the gradients by the inner optimizer"""
self.optimizer.zero_grad()
def increase_delta(self):
self.delta *= 2
def update_learning_rate(self):
"""Learning rate scheduling per step"""
self.n_current_steps += self.delta
new_lr = np.power(self.d_model, -0.5) * np.min([
np.power(self.n_current_steps, -0.5),
np.power(self.n_warmup_steps, -1.5) * self.n_current_steps])
for param_group in self.optimizer.param_groups:
param_group['lr'] = new_lr
return new_lr
############ Control Center and Hyperparameter ###############
run_name = "cpc-clf" + time.strftime("-%Y-%m-%d_%H_%M_%S")
config_encoder = box_from_file(Path('config_cpc.yaml'), file_type='yaml')
config = box_from_file(Path('config_clf.yaml'), file_type='yaml')
global_timer = timer() # global timer
logger = setup_logs(config.training.logging_dir, run_name) # setup logs
logger.info('### Experiment {} ###'.format(run_name))
logger.info('### Hyperparameter summary below ###\n {}\n'.format(config))
use_cuda = not config.training.no_cuda and torch.cuda.is_available()
print('use_cuda is', use_cuda)
device = torch.device("cuda" if use_cuda else "cpu")
# set seed for reproducibility
set_seed(config.training.seed, use_cuda)
# Load pretrained CPC model
cpc_model = CPCv1(config=config_encoder)
checkpoint = torch.load(config.txt_classifier.cpc_path)
cpc_model.load_state_dict(checkpoint['state_dict'])
cpc_model.to(device)
# Change Embedding layer with the expanded one
if config.txt_classifier.expanded_vocab:
embeddings = np.load('vocab_expansion/embeddings_expanded.npy')
cpc_model.embedding = nn.Embedding.from_pretrained(torch.from_numpy(embeddings).float(), padding_idx=config.dataset_classifier.padding_idx).to(device)
config.dataset_classifier.vocab_file_path = 'vocab_expansion/vocab_cpc_expanded.pkl'
# freeze weights
for param in cpc_model.parameters():
param.requires_grad = False
txt_model = TxtClassifier(config).to(device)
## Loading the dataset
logger.info('===> loading train, validation and test dataset')
training_set = SentimentAnalysis(config,'train')
testing_set = SentimentAnalysis(config,'test')
validation_set = SentimentAnalysis(config,'dev')
# create dataloader
train_loader = data.DataLoader(training_set, batch_size=config.training.batch_size, shuffle=True) # set shuffle to True
validation_loader = data.DataLoader(validation_set, batch_size=config.training.batch_size, shuffle=False) # set shuffle to False
test_loader = data.DataLoader(testing_set, batch_size=config.training.batch_size, shuffle=False) # set shuffle to False
# optimizer
optimizer = ScheduledOptim(
optim.Adam(
filter(lambda p: p.requires_grad, txt_model.parameters()),
betas=(0.9, 0.98), eps=1e-09, weight_decay=1e-4, amsgrad=True),
config.training.n_warmup_steps)
model_params = sum(p.numel() for p in txt_model.parameters() if p.requires_grad)
logger.info('### Model summary below###\n {}\n'.format(str(txt_model)))
logger.info('===> Model total parameter: {}\n'.format(model_params))
## Start training
best_acc = 0
best_loss = np.inf
best_epoch = -1
for epoch in range(1, config.training.epochs + 1):
epoch_timer = timer()
# Train and validate
train_clf(cpc_model, txt_model, device, train_loader, optimizer, epoch, config.training.log_interval)
val_acc, val_loss = validation_clf(cpc_model, txt_model, device, validation_loader)
# Save
if val_acc > best_acc:
best_acc = max(val_acc, best_acc)
snapshot(config.training.logging_dir, run_name, {
'epoch': epoch,
'validation_acc': val_acc,
'validation_loss': val_loss,
'state_dict': txt_model.state_dict(),
'optimizer': optimizer.state_dict(),
})
best_epoch = epoch
elif epoch - best_epoch > 2:
optimizer.increase_delta()
best_epoch = epoch
end_epoch_timer = timer()
logger.info("#### End epoch {}/{}, elapsed time: {}".format(epoch, config.training.epochs, end_epoch_timer - epoch_timer))
logger.info("################## Success #########################")
logger.info("#### Best Validation Accuracy: {}, Epoch: {}".format(best_acc, best_epoch))
## evaluation on test set
logger.info('===> loading best model for test evaluation')
checkpoint = torch.load(os.path.join(config.training.logging_dir, run_name + '-model_best.pth'))
txt_model.load_state_dict(checkpoint['state_dict'])
logger.info("############## Results on Test Set #################")
_, _ = validation_clf(cpc_model, txt_model, device, test_loader)
## end
end_global_timer = timer()
logger.info("Total elapsed time: %s" % (end_global_timer - global_timer))