-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-detex.py
132 lines (108 loc) · 4.67 KB
/
train-detex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import random
from torchvision import transforms, datasets, models
from tqdm import tqdm
from sklearn.metrics import classification_report, f1_score
EPOCHS = 5
BATCH_SIZE = 64
LEARNING_RATE = 0.003
SIGDIG=3
SEED=1220
THRESHOLD=0.001
TRANSFORMS = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])])
if __name__ == '__main__':
## Set random seeds for reproducibility on a specific machine
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.Generator().manual_seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
random.seed(SEED)
np.random.seed(SEED)
np.random.RandomState(SEED)
# Loading data
data = datasets.ImageFolder('../detexify-data/drawings/', transform=TRANSFORMS)
train_len = round(0.85*len(data))
dev_len = len(data) - train_len
train_data, dev_data = torch.utils.data.random_split(data, [train_len, dev_len])
train_loader = torch.utils.data.DataLoader(train_data, batch_size=BATCH_SIZE,
shuffle=True)
dev_loader = torch.utils.data.DataLoader(dev_data, batch_size=BATCH_SIZE,
shuffle=True)
# Get the symbol name corresponding to each class ID (integer)
class_ids = {v:k for k,v in data.class_to_idx.items()}
class_names = [class_ids[i] for i in class_ids.keys()]
model = models.mobilenet_v2(pretrained=False, progress=False,
num_classes=len(class_ids.keys()))
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
loss_func = nn.CrossEntropyLoss()
## GPU shit
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
model = model.to(device)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
device_ids=[i for i in range(torch.cuda.device_count())]
model = torch.nn.DataParallel(model, device_ids=device_ids)
dev_f1_list = [0]
for epoch in range(EPOCHS):
print("<" + "="*40 + F" Epoch {epoch} "+ "="*40 + ">")
# Calculate total loss for this epoch
total_train_loss = 0
model.train()
for step, (b_x, b_y) in enumerate(tqdm(train_loader)):
b_x = b_x.to(device)
b_y = b_y.to(device)
output = model(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
total_train_loss += loss.mean().item()
# Calculate the average loss over the training data.
avg_train_loss = total_train_loss / len(train_loader)
print(F'\n\t\tAverage Training loss: {avg_train_loss}')
print("\n\tRunning Validation...")
# Put model in evaluation mode to evaluate loss on the validation set
model.eval()
# Tracking variables
preds = np.array([])
targets = np.array([])
total_eval_loss = 0
for step, (b_x, b_y) in enumerate(dev_loader):
b_x = b_x.to(device)
b_y = b_y.to(device)
with torch.no_grad():
test_output = model(b_x)
loss = loss_func(test_output, b_y)
total_eval_loss += loss.mean().item()
pred_y = torch.max(test_output, 1)[1].data.to('cpu').numpy()
preds = np.append(pred_y, preds)
targets = np.append(b_y.to('cpu').numpy(), targets)
targets = targets.astype(int)
preds = preds.astype(int)
dev_f1 = f1_score(targets, preds, average='micro')
avg_dev_loss = total_eval_loss / len(dev_loader)
target_names = [class_ids[i] for i in np.unique(np.concatenate((targets,preds)))]
report = classification_report(targets, preds, target_names=target_names,
digits=SIGDIG, zero_division=0)
print('Validation loss: %.4f' % avg_dev_loss, '| dev micro-f1: %.2f' % dev_f1)
if dev_f1 - dev_f1_list[-1] > THRESHOLD:
model_to_save = model.module if hasattr(model, "module") else model
torch.save(model_to_save.state_dict(), 'mobilenet.bin')
with open('mnetreport_epoch:' + str(epoch+1) + '.txt', 'w') as f:
f.write(report)
dev_f1_list.append(dev_f1)
else:
break