-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathspecaccum.R
123 lines (123 loc) · 4.37 KB
/
specaccum.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
`specaccum` <-
function (comm, method = "exact", permutations = 100, conditioned=TRUE,
gamma="jack1", w = NULL, subset, ...)
{
METHODS <- c("collector", "random", "exact", "rarefaction", "coleman")
method <- match.arg(method, METHODS)
if (!is.null(w) && !(method %in% c("random", "collector")))
stop("weights 'w' can be only used with methods 'random' and 'collector'")
if (!missing(subset)) {
comm <- subset(comm, subset)
w <- subset(w, subset)
}
x <- comm
x <- as.matrix(x)
x <- x[, colSums(x) > 0, drop=FALSE]
n <- nrow(x)
p <- ncol(x)
accumulator <- function(x, ind) {
rowSums(apply(x[ind, , drop=FALSE], 2, cumsum) > 0)
}
specaccum <- sdaccum <- sites <- perm <- NULL
if (n == 1 && method != "rarefaction")
message("no actual accumulation since only one site provided")
switch(method, collector = {
sites <- seq_len(n)
xout <- weights <- cumsum(w)
specaccum <- accumulator(x, sites)
perm <- as.matrix(specaccum)
weights <- as.matrix(weights)
}, random = {
permat <- getPermuteMatrix(permutations, n)
perm <- apply(permat, 1, accumulator, x = x)
if (!is.null(w))
weights <- as.matrix(apply(permat, 1, function(i) cumsum(w[i])))
sites <- seq_len(n)
if (is.null(w)) {
specaccum <- apply(perm, 1, mean)
sdaccum <- apply(perm, 1, sd)
} else {
sumw <- sum(w)
xout <- seq(sumw/n, sumw, length.out = n)
intx <- sapply(seq_len(NCOL(perm)), function(i)
approx(weights[,i], perm[,i], xout = xout)$y)
specaccum <- apply(intx, 1, mean)
sdaccum <- apply(intx, 1, sd)
}
}, exact = {
freq <- colSums(x > 0)
freq <- freq[freq > 0]
f <- length(freq)
ldiv <- lchoose(n, 1:n)
result <- array(dim = c(n, f))
for (i in 1:n) {
result[i, ] <- ifelse(n - freq < i, 0,
exp(lchoose(n - freq, i) - ldiv[i]))
}
sites <- 1:n
specaccum <- rowSums(1 - result)
if (conditioned) {
V <- result * (1 - result)
tmp1 <- cor(x > 0)
ind <- lower.tri(tmp1)
tmp1 <- tmp1[ind]
tmp1[is.na(tmp1)] <- 0
cv <- numeric(n)
for (i in 1:n) {
tmp2 <- outer(sqrt(V[i, ]), sqrt(V[i, ]))[ind]
cv[i] <- 2 * sum(tmp1 * tmp2)
}
V <- rowSums(V)
sdaccum <- sqrt(V + cv)
}else{
Stot <- specpool(x)[,gamma]
sdaccum1 <- rowSums((1-result)^2)
sdaccum2 <- specaccum^2/Stot
sdaccum <- sqrt(sdaccum1 - sdaccum2)
}
}, rarefaction = {
## rarefaction should be done on observed counts that usually
## have singletons. Warn here but not on every row when
## calling rarefy().
minobs <- min(x[x > 0])
if (minobs > 1)
warning(
gettextf("most observed count data have counts 1, but smallest count is %d", minobs))
freq <- colSums(x)
freq <- freq[freq > 0]
tot <- sum(freq)
ind <- round(seq(tot/n, tot, length = n))
result <- matrix(NA, nrow = 2, ncol = n)
for (i in 1:n) {
result[, i] <- suppressWarnings(rarefy(t(freq), ind[i], se = TRUE))
}
specaccum <- result[1, ]
sdaccum <- result[2, ]
sites <- ind/tot * n
}, coleman = {
freq <- colSums(x > 0)
result <- array(dim = c(n, p))
for (i in 1:n) {
result[i, ] <- (1 - i/n)^freq
}
result <- 1 - result
sites <- seq_len(n)
specaccum <- rowSums(result)
sdaccum <- sqrt(rowSums(result * (1 - result)))
})
out <- list(call = match.call(), method = method, sites = sites,
richness = specaccum, sd = sdaccum, perm = perm)
if (!is.null(w)) {
out$weights <- weights
out$effort <- xout
}
if (method == "rarefaction")
out$individuals <- ind
## return 'freq' for methods that are solely defined by them
if (method %in% c("exact", "rarefaction", "coleman"))
out$freq <- freq
if (method == "random")
attr(out, "control") <- attr(permat, "control")
class(out) <- "specaccum"
out
}