-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathmso.R
96 lines (96 loc) · 4.24 KB
/
mso.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
`mso` <-
function (object.cca, object.xy, grain = 1, round.up = FALSE,
permutations = 0)
{
if (inherits(object.cca, "dbrda"))
stop("'mso' is not yet implemented for 'dbrda'\ncontact developers or submit a pull request with your code in github")
EPS <- sqrt(.Machine$double.eps)
if (inherits(object.cca, "mso")) {
rm <- which(class(object.cca) == "mso")
class(object.cca) <- class(object.cca)[-rm]
}
object <- object.cca
xy <- object.xy
N <- nobs(object)
if (inherits(object, "rda"))
N <- 1
## we expect xy are coordinates and calculate distances, but a
## swift user may have supplied distances, and we use them.
## However, we won't test for distances in square matrices, but
## treat that as a user mistake and let it go.
if (inherits(xy, "dist"))
Dist <- xy
else
Dist <- dist(xy)
object$grain <- grain
if (round.up)
H <- ceiling(Dist/grain) * grain
else H <- round(Dist/grain) * grain
hmax <- round((max(Dist)/2)/grain) *grain
H[H > hmax] <- max(H)
object$H <- H
H <- as.vector(H)
Dist <- sapply(split(Dist, H), mean)
object$vario <- data.frame(H = names(table(H)), Dist = Dist,
n = as.numeric(table(H)))
test <- list()
if (is.numeric(object$CCA$rank)) {
if (is.numeric(object$pCCA$rank)) {
test$pcca <- sapply(split(dist(ordiYbar(object, "pCCA"))^2 *
N/2, H), mean)
test$cca <- sapply(split(dist(ordiYbar(object,"CCA"))^2 *
N/2, H), mean)
test$ca <- sapply(split(dist(ordiYbar(object,"CA"))^2 *
N/2, H), mean)
test$all.cond <- sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), mean)
test$se <- sqrt(sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), var)/object$vario$n)
object$vario <- cbind(object$vario, All = test$all.cond,
Sum = test$ca + test$cca, CA = test$ca,
CCA = test$cca, pCCA = test$pcca,
se = test$se)
} else {
test$all <- sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), mean)
test$cca <- sapply(split(dist(ordiYbar(object, "CCA"))^2 *
N/2, H), mean)
test$ca <- sapply(split(dist(ordiYbar(object,"CA"))^2 *
N/2, H), mean)
test$se <- sqrt(sapply(split(dist(ordiYbar(object, "partial"))^2 *
N/2, H), var)/object$vario$n)
object$vario <- cbind(object$vario, All = test$all,
Sum = test$ca + test$cca, CA = test$ca,
CCA = test$cca, se = test$se)
}
} else {
test$ca <- sapply(split(dist(ordiYbar(object, "CA"))^2 * N/2,
H), mean)
object$vario <- cbind(object$vario, All = test$ca, CA = test$ca)
}
permat <- getPermuteMatrix(permutations, nobs(object))
nperm <- nrow(permat)
if (nperm) {
object$H.test <- matrix(0, length(object$H), nrow(object$vario))
for (i in 1:nrow(object$vario)) {
object$H.test[, i] <- as.numeric(object$H == object$vario$H[i])
}
xdis <- as.matrix(dist(ordiYbar(object, "CA"))^2)
## taking lower triangle is faster than as.dist() because it
## does not set attributes
ltri <- lower.tri(xdis)
statistic <- abs(cor(as.vector(xdis[ltri]), object$H.test))
permfunc <- function(k) {
permvec <- as.vector(xdis[k,k][ltri])
abs(cor(permvec, object$H.test))
}
perm <- sapply(1:nperm, function(take) permfunc(permat[take,]))
object$vario$CA.signif <-
(rowSums(sweep(perm, 1, statistic - EPS, ">=")) + 1)/
(nperm + 1)
attr(object$vario, "control") <- attr(permat, "control")
}
object$call <- match.call()
class(object) <- c("mso", class(object))
object
}