-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathanova.cca.R
83 lines (83 loc) · 3.55 KB
/
anova.cca.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
`anova.cca` <-
function(object, ..., permutations = how(nperm=999), by = NULL,
model = c("reduced", "direct", "full"),
parallel = getOption("mc.cores"), strata = NULL,
cutoff = 1, scope = NULL)
{
EPS <- sqrt(.Machine$double.eps) # for permutation P-values
model <- match.arg(model)
## permutation matrix
N <- nrow(object$CA$u)
permutations <- getPermuteMatrix(permutations, N, strata = strata)
seed <- attr(permutations, "seed")
control <- attr(permutations, "control")
## see if this was a list of ordination objects
dotargs <- list(...)
## we do not want to give dotargs to anovaCCAlist, but we
## evaluate 'parallel' and 'model' here
if (length(dotargs)) {
isCCA <- sapply(dotargs, function(z) inherits(z, "cca"))
if (any(isCCA)) {
dotargs <- dotargs[isCCA]
object <- c(list(object), dotargs)
sol <-
anovaCCAlist(object,
permutations = permutations,
model = model,
parallel = parallel)
attr(sol, "Random.seed") <- seed
attr(sol, "control") <- control
return(sol)
}
}
## We only have a single model: check if it is empty
if (is.null(object$CA) || is.null(object$CCA) ||
object$CCA$rank == 0 || object$CA$rank == 0)
return(anovaCCAnull(object))
## by cases
if (!is.null(by)) {
by <- match.arg(by, c("terms", "margin", "axis", "onedf"))
if (by %in% c("terms", "margin") && is.null(object$terms))
stop("model must be fitted with formula interface")
sol <- switch(by,
"terms" = anovaCCAbyterm(object,
permutations = permutations,
model = model, parallel = parallel),
"margin" = anovaCCAbymargin(object,
permutations = permutations,
model = model, parallel = parallel,
scope = scope),
"axis" = anovaCCAbyaxis(object,
permutations = permutations,
model = model, parallel = parallel,
cutoff = cutoff),
"onedf" = anovaCCAby1df(object,
permutations = permutations,
model = model, parallel = parallel)
)
attr(sol, "Random.seed") <- seed
attr(sol, "control") <- control
return(sol)
}
## basic overall test: pass other arguments except 'strata'
## because 'permutations' already is a permutationMatrix
tst <- permutest.cca(object, permutations = permutations,
model = model, parallel = parallel, ...)
Fval <- c(tst$F.0, NA)
Pval <- (sum(tst$F.perm >= tst$F.0 - EPS) + 1)/(tst$nperm + 1)
Pval <- c(Pval, NA)
table <- data.frame(tst$df, tst$chi, Fval, Pval)
if (inherits(object, c("capscale", "dbrda")) && object$adjust == 1)
varname <- "SumOfSqs"
else if (inherits(object, "rda"))
varname <- "Variance"
else
varname <- "ChiSquare"
colnames(table) <- c("Df", varname, "F", "Pr(>F)")
head <- paste0("Permutation test for ", tst$method, " under ",
tst$model, " model\n", howHead(control))
mod <- paste("Model:", c(object$call))
structure(table, heading = c(head, mod), Random.seed = seed,
control = control, F.perm = tst$F.perm,
class = c("anova.cca", "anova", "data.frame"))
}