-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathRsquareAdj.R
83 lines (77 loc) · 2.34 KB
/
RsquareAdj.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
`RsquareAdj` <-
function(x, ...)
{
UseMethod("RsquareAdj")
}
`RsquareAdj.default` <-
function(x, n, m, ...)
{
r2 <- 1 - (1-x)*(n-1)/(n-m-1)
if (any(na <- m >= n-1))
r2[na] <- NA
r2
}
## Use this with rda() results
`RsquareAdj.rda` <-
function(x, ...)
{
if (!is.null(x$CA$imaginary.chi)) # capscale with neg. eigenvalues
R2 <- x$CCA$tot.chi/(x$tot.chi - x$CA$imaginary.chi)
else
R2 <- x$CCA$tot.chi/x$tot.chi
m <- x$CCA$qrank
n <- nrow(x$CCA$u)
if (is.null(x$pCCA)) {
radj <- RsquareAdj(R2, n, m)
} else {
## Partial model: same adjusted R2 as for component [a] in two
## source varpart model
R2p <- x$pCCA$tot.chi/x$tot.chi
p <- x$pCCA$QR$rank
radj <- RsquareAdj(R2 + R2p, n, m + p) - RsquareAdj(R2p, n, p)
}
list(r.squared = R2, adj.r.squared = radj)
}
## cca result: RsquareAdj is calculated similarly as in
## varpart(). This is similar "semipartial" model as for rda() and
## found as a difference of R2-adj values of combined model with
## constraints + conditions and only conditions.
`RsquareAdj.cca` <-
function (x, permutations = 1000, ...)
{
r2 <- x$CCA$tot.chi / x$tot.chi
if (df.residual(x) == 0) {
radj <- NA
} else if (is.null(x$pCCA)) {
p <- permutest(x, permutations, ...)
radj <- 1 - ((1 - r2) / (1 - mean(p$num / x$tot.chi)))
} else {
p <- getPermuteMatrix(permutations, nobs(x))
Y <- ordiYbar(x, "initial")
r2tot <- (x$pCCA$tot.chi + x$CCA$tot.chi) / x$tot.chi
r2null <- mean(sapply(seq_len(nrow(p)), function(i)
sum(qr.fitted(x$CCA$QR, Y[p[i,],])^2)))
r2tot <- 1 - ((1-r2tot)/(1-r2null/x$tot.chi))
r2p <- x$pCCA$tot.chi / x$tot.chi
r2null <- mean(sapply(seq_len(nrow(p)), function(i)
sum(qr.fitted(x$pCCA$QR, Y[p[i,],])^2)))
r2p <- 1 - ((1-r2p)/(1-r2null/x$tot.chi))
radj <- r2tot - r2p
}
list(r.squared = r2, adj.r.squared = radj)
}
## Linear model: take the result from the summary
RsquareAdj.lm <-
function(x, ...)
{
summary(x)[c("r.squared", "adj.r.squared")]
}
## Generalized linear model: R2-adj only with Gaussian model
RsquareAdj.glm <-
function(x, ...)
{
if (family(x)$family == "gaussian")
summary.lm(x)[c("r.squared", "adj.r.squared")]
else
NA
}