-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathCCorA.R
185 lines (182 loc) · 7.15 KB
/
CCorA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
`CCorA` <-
function(Y, X, stand.Y = FALSE, stand.X = FALSE, permutations = 0, ...)
{
epsilon <- sqrt(.Machine$double.eps)
##
## BEGIN: Internal functions
##
cov.inv <- function(mat, no, epsilon) {
## This function returns:
## 1) mat = matrix F of the principal components (PCA object scores);
## 2) S.inv = the inverse of the covariance matrix;
## 3) m = the rank of matrix 'mat'
## The inverse of the PCA covariance matrix is the diagonal
## matrix of (1/eigenvalues). If ncol(mat) = 1, the
## inverse of the covariance matrix contains 1/var(mat).
mat <- as.matrix(mat) # 'mat' was centred before input to cov.inv
if(ncol(mat) == 1) {
S.inv <- as.matrix(1/var(mat))
m <- 1
} else {
S.svd <- svd(cov(mat))
m <- ncol(mat)
mm <- length(which(S.svd$d > max(epsilon, epsilon * S.svd$d[1L])))
if(mm < m) {
message(gettextf("matrix %d: rank=%d < order %d",
no, mm, m))
m <- mm
}
S.inv <- diag(1/S.svd$d[1:m])
mat <- mat %*% S.svd$u[,1:m] # S.svd$u = normalized eigenvectors
}
list(mat=mat, S.inv=S.inv, m=m)
}
## Check zero variances
var.null <- function (mat, no) {
problems <- diag(cov(mat)) <= 0
if (any(problems)) {
whichProbs <- paste(which(problems), collapse=", ")
warning("zero variance in variable(s) ", whichProbs)
stop("verify/modify your matrix No. ", no)
}
invisible(0)
}
probPillai <- function(Y.per, X, n, S11.inv, S22.inv, s, df1, df2, epsilon,
Fref, permat, ...) {
## Permutation test for Pillai's trace in CCorA.
## Reference: Brian McArdle's unpublished graduate course notes.
S12.per <- cov(Y.per,X)
gross.mat <- S12.per %*% S22.inv %*% t(S12.per) %*% S11.inv
Pillai.per <- sum(diag(gross.mat))
Fper <- (Pillai.per*df2)/((s-Pillai.per)*df1)
Fper >= (Fref-epsilon)
}
## END: internal functions
##
Y <- as.matrix(Y)
var.null(Y,1)
nY <- nrow(Y)
p <- ncol(Y)
if(is.null(colnames(Y))) {
Ynoms <- paste("VarY", 1:p, sep="")
} else {
Ynoms <- colnames(Y)
}
X <- as.matrix(X)
var.null(X,2)
nX <- nrow(X)
q <- ncol(X)
if(is.null(colnames(X))) {
Xnoms <- paste("VarX", 1:q, sep="")
} else {
Xnoms <- colnames(X)
}
if(nY != nX) stop("different numbers of rows in Y and X")
n <- nY
if(is.null(rownames(X)) & is.null(rownames(Y))) {
rownoms <- paste("Obj", 1:n, sep="")
} else {
if(is.null(rownames(X))) {
rownoms <- rownames(Y)
} else {
rownoms <- rownames(X)
}
}
Y.c <- scale(Y, center = TRUE, scale = stand.Y)
X.c <- scale(X, center = TRUE, scale = stand.X)
## Check for identical matrices
if(p == q) {
if(sum(abs(Y-X)) < epsilon^2) stop("Y and X are identical")
if(sum(abs(Y.c-X.c)) < epsilon^2) stop("after centering, Y and X are identical")
}
## Replace Y.c and X.c by tables of their PCA object scores, computed by SVD
temp <- cov.inv(Y.c, 1, epsilon)
Y <- temp$mat
pp <- temp$m
rownames(Y) <- rownoms
temp <- cov.inv(X.c, 2, epsilon)
X <- temp$mat
qq <- temp$m
rownames(X) <- rownoms
## Correction PL, 26dec10
if(max(pp,qq) >= (n-1))
stop("not enough degrees of freedom: max(pp,qq) >= (n-1)")
## Covariance matrices, etc. from the PCA scores
S11 <- cov(Y)
if(sum(abs(S11)) < epsilon) return(0)
S22 <- cov(X)
if(sum(abs(S22)) < epsilon) return(0)
S12 <- cov(Y,X)
if(sum(abs(S12)) < epsilon) return(0)
S11.chol <- chol(S11)
S11.chol.inv <- solve(S11.chol)
S22.chol <- chol(S22)
S22.chol.inv <- solve(S22.chol)
## K summarizes the correlation structure between the two sets of variables
K <- t(S11.chol.inv) %*% S12 %*% S22.chol.inv
K.svd <- svd(K)
Eigenvalues <- K.svd$d^2
##
## Check for circular covariance matrix
if((p == q) & (var(K.svd$d) < epsilon))
warning("[nearly] circular covariance matrix - the solution may be meaningless")
## K.svd$u %*% diag(K.svd$d) %*% t(K.svd$v) # To check that K = U D V'
axenames <- paste("CanAxis",seq_along(K.svd$d),sep="")
U <- K.svd$u
V <- K.svd$v
A <- S11.chol.inv %*% U
B <- S22.chol.inv %*% V
Cy <- (Y %*% A) # Correction 27dec10: remove /sqrt(n-1)
Cx <- (X %*% B) # Correction 27dec10: remove /sqrt(n-1)
## Compute the 'Biplot scores of Y and X variables' a posteriori --
corr.Y.Cy <- cor(Y.c, Cy) # To plot Y in biplot in space Y
corr.Y.Cx <- cor(Y.c, Cx) # Available for plotting Y in space of X
corr.X.Cy <- cor(X.c, Cy) # Available for plotting X in space of Y
corr.X.Cx <- cor(X.c, Cx) # To plot X in biplot in space X
## Add row and column names
rownames(Cy) <- rownames(Cx) <- rownoms
colnames(Cy) <- colnames(Cx) <- axenames
rownames(corr.Y.Cy) <- rownames(corr.Y.Cx) <- Ynoms
rownames(corr.X.Cy) <- rownames(corr.X.Cx) <- Xnoms
colnames(corr.Y.Cy) <- colnames(corr.Y.Cx) <- axenames
colnames(corr.X.Cy) <- colnames(corr.X.Cx) <- axenames
## Compute the two redundancy statistics
RsquareY.X <- simpleRDA2(Y, X)
RsquareX.Y <- simpleRDA2(X, Y)
Rsquare.adj.Y.X <- RsquareAdj(RsquareY.X$Rsquare, n, RsquareY.X$m)
Rsquare.adj.X.Y <- RsquareAdj(RsquareX.Y$Rsquare, n, RsquareX.Y$m)
## Compute Pillai's trace = sum of the canonical eigenvalues
## = sum of the squared canonical correlations
S11.inv <- S11.chol.inv %*% t(S11.chol.inv)
S22.inv <- S22.chol.inv %*% t(S22.chol.inv)
gross.mat <- S12 %*% S22.inv %*% t(S12) %*% S11.inv
PillaiTrace <- sum(diag(gross.mat))
s <- min(pp, qq)
df1 <- max(pp,qq)
df2 <- (n - max(pp,qq) - 1)
Fval <- (PillaiTrace*df2)/((s-PillaiTrace)*df1)
p.Pillai <- pf(Fval, s*df1, s*df2, lower.tail=FALSE)
permat <- getPermuteMatrix(permutations, n, ...)
nperm <- nrow(permat)
if (ncol(permat) != n)
stop(gettextf("'permutations' have %d columns, but data have %d rows",
ncol(permat), n))
if (nperm > 0) {
p.perm <- sapply(seq_len(nperm), function(indx, ...)
probPillai(Y[permat[indx,],] , X, n, S11.inv, S22.inv, s,
df1, df2, epsilon, Fval, nperm, ...))
p.perm <- (sum(p.perm) +1)/(nperm + 1)
} else {
p.perm <- NA
}
out <- list(Pillai=PillaiTrace, Eigenvalues=Eigenvalues, CanCorr=K.svd$d,
Mat.ranks=c(RsquareX.Y$m, RsquareY.X$m),
RDA.Rsquares=c(RsquareY.X$Rsquare, RsquareX.Y$Rsquare),
RDA.adj.Rsq=c(Rsquare.adj.Y.X, Rsquare.adj.X.Y),
nperm=nperm, p.Pillai=p.Pillai, p.perm=p.perm, Cy=Cy, Cx=Cx,
corr.Y.Cy=corr.Y.Cy, corr.X.Cx=corr.X.Cx, corr.Y.Cx=corr.Y.Cx,
corr.X.Cy=corr.X.Cy, control = attr(permat, "control"),
call = match.call())
class(out) <- "CCorA"
out
}