-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifiers.py
executable file
·101 lines (92 loc) · 4.87 KB
/
classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import nltk
import sklearn
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.preprocessing import Normalizer
from sklearn.datasets import load_files
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
class Classifier:
def __init__(self):
self.clf = None
self.train = self.load_raw_data('datasets/founta')
self.test = self.load_raw_data('datasets/davidson')
def load_raw_data(self, path):
dataset = load_files(path, shuffle=True, encoding='ISO-8859-1')
return dataset
def extract_features(self):
vector = CountVectorizer(
min_df=2,
tokenizer=nltk.TweetTokenizer(False).tokenize,
encoding='ISO-8859-1',
stop_words=nltk.corpus.stopwords.words('english')
)
train_counts = vector.fit_transform(self.train.data)
test_counts = vector.transform(self.test.data)
tfidf_transformer = TfidfTransformer()
train_tfidf = tfidf_transformer.fit_transform(train_counts)
test_tfidf = tfidf_transformer.transform(test_counts)
return train_counts, test_counts
def mnb(self):
train_tfidf, test_tfidf = self.extract_features()
train_tfidf, validation_tfidf, train_tfidf_target, validation_tfidf_target = train_test_split(
train_tfidf, self.train.target, test_size=0.10
)
clf = MultinomialNB()
clf.fit(train_tfidf, train_tfidf_target)
val_predicted = clf.predict(validation_tfidf)
test_predicted = clf.predict(test_tfidf)
print("--- Validation metrics ---")
print("Accuarcy score:", accuracy_score(validation_tfidf_target, val_predicted))
print("Confusion matrix:\n", confusion_matrix(validation_tfidf_target, val_predicted))
print("Classification report:\n", classification_report(validation_tfidf_target, val_predicted))
print("--- Test metrics ---")
print("Accuarcy score:", accuracy_score(self.test.target, test_predicted))
print("Confusion matrix:\n", confusion_matrix(self.test.target, test_predicted))
print("Classification report:\n", classification_report(self.test.target, test_predicted))
def svm(self):
train_tfidf, test_tfidf = self.extract_features()
train_tfidf, validation_tfidf, train_tfidf_target, validation_tfidf_target = train_test_split(
train_tfidf, self.train.target, test_size=0.10
)
scaler = Normalizer()
train_tfidf = scaler.transform(train_tfidf)
validation_tfidf = scaler.transform(validation_tfidf)
test_tfidf = scaler.transform(test_tfidf)
clf = SGDClassifier()
clf.fit(train_tfidf, train_tfidf_target)
val_predicted = clf.predict(validation_tfidf)
test_predicted = clf.predict(test_tfidf)
print("--- Validation metrics ---")
print("Accuarcy score:", accuracy_score(validation_tfidf_target, val_predicted))
print("Confusion matrix:\n", confusion_matrix(validation_tfidf_target, val_predicted))
print("Classification report:\n", classification_report(validation_tfidf_target, val_predicted))
print("--- Test metrics ---")
print("Accuarcy score:", accuracy_score(self.test.target, test_predicted))
print("Confusion matrix:\n", confusion_matrix(self.test.target, test_predicted))
print("Classification report:\n", classification_report(self.test.target, test_predicted))
def lr(self):
train_tfidf, test_tfidf = self.extract_features()
train_tfidf, validation_tfidf, train_tfidf_target, validation_tfidf_target = train_test_split(
train_tfidf, self.train.target, test_size=0.10
)
clf = LogisticRegression()
clf.fit(train_tfidf, train_tfidf_target)
val_predicted = clf.predict(validation_tfidf)
test_predicted = clf.predict(test_tfidf)
print("--- Validation metrics ---")
print("Accuarcy score:", accuracy_score(validation_tfidf_target, val_predicted))
print("Confusion matrix:\n", confusion_matrix(validation_tfidf_target, val_predicted))
print("Classification report:\n", classification_report(validation_tfidf_target, val_predicted))
print("--- Test metrics ---")
print("Accuarcy score:", accuracy_score(self.test.target, test_predicted))
print("Confusion matrix:\n", confusion_matrix(self.test.target, test_predicted))
print("Classification report:\n", classification_report(self.test.target, test_predicted))
clf = Classifier()
print("--- Multinomial Naive Bayes classification ---")
clf.mnb()
print("--- Linear Support Vector Machine classification ---")
clf.svm()
print("--- Logistic Regression classification ---")
clf.lr()