-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAirline RScript file.R
1100 lines (830 loc) · 30.9 KB
/
Airline RScript file.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
## Descriptive Analysis
install.packages("glmnet")
install.packages('clusterGeneration')
install.packages("stats")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("ggfortify")
install.packages("Hmisc")
install.packages("flexclust")
install.packages("NbClust")
install.packages("janitor")
install.packages("reshape")
install.packages("lares")
library(ggstatsplot)
library(reshape)
library(readxl)
library(tidyverse)
library(ggcorrplot) # for the ggcorrplot function
library(interactions)
library(Hmisc)
library("purrr")
library(glmnet)
require(MASS)
require(clusterGeneration)
library(dplyr)
library(ggplot2)
library(stats)
library(ggfortify)
library(NbClust)
library(flexclust)
library(janitor)
library(lares)
library(gridExtra)
library(scales)
library(corrplot)
# Input data
library(readxl)
View(satisfaction)
glimpse(satisfaction)
summary(satisfaction)
#satisfaction <- read_excel("satisfaction.xlsx")
data1 <- satisfaction
customer_data <- satisfaction
## View data
View(satisfaction)
glimpse(satisfaction)
## Check Summary Statistics
summary(satisfaction)
#(1)MISSING VALUES
#total no of missing values in table
sum(is.na(satisfaction))
#Find the column names with missing values
colnames(satisfaction)[colSums(is.na(satisfaction)) > 0]
names(which(colSums(is.na(satisfaction)) > 0))
#count total missing values in 'Arrival Delay in Minutes' column
sum(is.na(satisfaction$`Arrival Delay in Minutes`))
#identify locations of missing values in 'Arrival Delay in Minutes' column
which(is.na(satisfaction$`Arrival Delay in Minutes`))
#Remove rows with NA (missing) values
data = na.omit(satisfaction) # Method 1 - Remove NA
data1 = na.omit(satisfaction)
view(data)
#Convert character variables to factors
data <- data %>%
mutate(satisfaction_v2 = factor(satisfaction_v2))
data <- data %>%
mutate(Gender = factor(Gender))
data <- data%>%
mutate(`Customer Type` = factor(`Customer Type`))
data <- data %>%
mutate(`Type of Travel`= factor(`Type of Travel`))
data <- data %>%
mutate(Class = factor(Class))
#Convert non-numeric variables to numeric
data$satisfaction_v2<- as.numeric(as.factor(data$satisfaction_v2))
data$Gender <- as.numeric(as.factor(data$Gender))
data$`Customer Type`<- as.numeric(as.factor(data$`Customer Type`))
data$`Type of Travel` <- as.numeric(as.factor(data$`Type of Travel`))
data$Class <- as.numeric(as.factor(data$Class))
data <- as.data.frame(data)
# Creating new column titled Satisfaction similar to satisfaction_v2
data$Satisfaction <- data$satisfaction_v2
# Create new dataframe with only numeric variables by removing satisfaction_v2
data = select(data, -c(satisfaction_v2))
data = select(data, -c(3,5))
## Descriptive Analysis
# 2-way table
data %>% # Summary by group using purrr
split(.$Satisfaction) %>%
map(summary)
# Correlation
correlationMa
rix <- cor(data[,])
view(correlationMatrix)
## Create data1 where target is a factor
#Convert character variables to factors
data1 <- data1 %>%
mutate(satisfaction_v2 = factor(satisfaction_v2))
data1 <- data1 %>%
mutate(Gender = factor(Gender))
data1 <- data1%>%
mutate('Customer Type' = factor('Customer Type'))
data1 <- data1 %>%
mutate('Type of Travel'= factor('Type of Travel'))
data1 <- data1 %>%
mutate(Class = factor(Class))
#Convert non-numeric variables to numeric
data1$Gender <- as.numeric(as.factor(data1$Gender))
data1$'Customer Type' <- as.numeric(as.factor(data1$'Customer Type'))
data1$'Type of Travel' <- as.numeric(as.factor(data1$'Type of Travel'))
data1$Class <- as.numeric(as.factor(data1$Class))
control <- trainControl(method="repeatedcv", number=10, repeats=3)
data1 <- as.data.frame(data1)
model <- train(satisfaction_v2 ~ ., method = "glm", data = data1)
summary(model)
# Significance
model1 <- train(Satisfaction ~ ., method = "glm", data = data)
summary(model1)
varImp(model1, scale = TRUE)
rm(model)
model
varImp(model, scale = TRUE)
####3 use of variation inflation factor
set.seed(2)
num.vars<-15
num.obs<-200
cov.mat<-genPositiveDefMat(num.vars,covMethod="unifcorrmat")$Sigma
rand.vars<-mvrnorm(num.obs,rep(0,num.vars),Sigma=cov.mat)
m<-lm(Satisfaction~.,data=data)
summary(m)
library(car)
vif(m)
##Lasso Regression
xtrain <- data1[ -c(2) ] #taking all columns without dependent variable
ytrain <- data1 [c(2)] #taking the dependent variable
xtrain <- as.matrix(xtrain) #converting to matrix
#cross validation to find optimal lambda
lasreg = cv.glmnet(x= xtrain, y = ytrain,family = c("binomial"), aplha = 1,
nlambda = 100)
#fit values
fit = glmnet(x= xtrain,y = ytrain,family = c("binomial"), aplha = 1,
lambda = lasreg$lambda.1se)
fit$beta[,1]
#pos & neg correlated variables related to their coefficients
coef(lasreg, s = "lambda.1se")%>%
tidy()%>%
filter(row !="(Intercept)")%>%
ggplot(aes(value, reorder(row,value),color = value>0))+
geom_point(show.legend = FALSE)+
ggtitle("feature variables")+
xlab("Coefficient")+
ylab(NULL)
# Welch's Two Sample T-Test
#T-Test
t.test(data$'Inflight wifi service' ~ data$Satisfaction)
t.test(data$Age ~ data$Satisfaction)
t.test(data$'Flight Distance' ~ data$Satisfaction)
t.test(data$'Departure/Arrival time convenient' ~ data$Satisfaction)
t.test(data$'Departure Delay in Minutes' ~ data$Satisfaction)
t.test(data$'Arrival Delay in Minutes' ~ data$Satisfaction)
t.test(data$'Inflight entertainmen' ~ data$Satisfaction)
t.test(data$'Online support' ~ data$Satisfaction)
t.test(data$'Ease of Online booking' ~ data$Satisfaction)
t.test(data$'On-board service' ~ data$Satisfaction)
t.test(data$'Gate location' ~ data$Satisfaction)
t.test(data$'Food and drink' ~ data$Satisfaction)
t.test(data$'Online boarding' ~ data$Satisfaction)
t.test(data$'Cleanliness' ~ data$Satisfaction)
t.test(data$'Baggage handling' ~ data$Satisfaction)
t.test(data$'Checkin service' ~ data$Satisfaction)
t.test(data$'Seat comfort' ~ data$Satisfaction)
t.test(data$'Inflight wifi service' ~ data$Satisfaction)
t.test(data$'Leg room service' ~ data$Satisfaction)
# Visualization
# Correlation Plot
corrplot(X, method = 'circle', type = "upper", order = 'AOE', tl.col = "black", tl.srt = 90, insig = 'p-value') ###Correlation matrix Graph 1
# Creating new Variables
satisfaction$Satisfaction <- satisfaction$`satisfaction_v2`
satisfaction$Customer.Type <- satisfaction$`Customer Type`
satisfaction$Type.of.Travel <- satisfaction$`Type of Travel`
# Taking out duplicate variables
satisfaction = select(satisfaction, -c(satisfaction_v2,`Type of Travel`,`Customer Type` ))
# Barcharts + Cramer's V and Chi-Square Test
BarChart(Gender, data=satisfaction, by=Satisfaction, theme=c("light"))
BarChart(Class, data=satisfaction, by= Satisfaction)
BarChart(Customer.Type, data=satisfaction, by= Satisfaction, ylab='Count of Customer Type', xlab='Customer Type')
BarChart(Type.of.Travel, data=satisfaction, by= Satisfaction, ylab='Count of Type of Travel', xlab='Type of Travel')
#Barplots
barplot1 <- ggplot(satisfaction, aes(x=Satisfaction, fill = Satisfaction)) + geom_bar(position="dodge") + theme_dark()
barplot1
# Customer Type by Satisfaction
p1 <- ggplot(satisfaction,
aes(x = Customer.Type,
fill = satisfaction_v2)) +
geom_bar(position="dodge") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set2") +
labs(y = "Number of Customers",
fill = "Satisfaction",
x = "Customer Type",
title = "Number of customer type by customer satisfaction") +
theme_minimal()
p1
# Proportion of Customer Type
p2 <- ggplot(satisfaction,
aes(x = factor(Customer.Type,
labels = c("Disloyal", "Loyal Customer")),
fill = satisfaction_v2)) +
geom_bar(position="fill") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set1") +
labs(y = "Percentage",
fill = "Satisfaction",
x = "Customer Type",
title = "Proportions of customer types by customer satisfaction") +
theme_minimal()
p2
# Gender by Satisfaction
p3 <- ggplot(satisfaction,
aes(x = Gender,
fill = satisfaction_v2)) +
geom_bar(position="dodge") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set2") +
labs(y = "Number of Customers",
fill = "Satisfaction",
x = "Gender",
title = "Number of customers in each gender by satisfaction") +
theme_minimal()
p3
# Proportion of Gender by Satisfaction
p4 <- ggplot(satisfaction,
aes(x = Gender,
fill = satisfaction_v2)) +
geom_bar(position="fill") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set1") +
labs(y = "Percentage",
fill = "Satisfaction",
x = "Gender",
title = "Proportions of gender by customer satisfaction") +
theme_minimal()
p4
# Type of Travel Vs. customer satisfaction
p5 <- ggplot(satisfaction,
aes(x = Type.of.Travel,
fill = satisfaction_v2)) +
geom_bar(position="dodge") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set2") +
labs(y = "Number of Customers",
fill = "Satisfaction",
x = "Type of Travel",
title = "Number of customers in each travel type by satisfaction")
p5
# Proportion
p6 <- ggplot(satisfaction,
aes(x = Type.of.Travel,
fill = satisfaction_v2)) +
geom_bar(position="fill") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set1") +
labs(y = "Percentage",
fill = "Satisfaction",
x = "Type of Business",
title = "Proportions of business types by satisfaction")
p6
# Class Type by Satisfaction Level
p7 <- ggplot(satisfaction,
aes(x = Class,
fill = satisfaction_v2)) +
geom_bar(position="dodge") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set2") +
labs(y = "Number of Customers",
fill = "Satisfaction",
x = "Class",
title = "Number of customers in each class by satisfaction")
p7
# Proportion of Customer Type
p8 <- ggplot(satisfaction,
aes(x = Class,
fill = satisfaction_v2)) +
geom_bar(position="fill") +
scale_y_continuous(breaks = seq(0, 1, .2),
label = percent) +
scale_fill_brewer(palette = "Set1") +
labs(y = "Percentage",
fill = "Satisfaction",
x = "Class",
title = "Proportions of class by satisfaction") +
theme_minimal()
p8
## Correlation Plot (Visualisation)
cormat <- round(cor(cordata),2) # correlation matrix with only numeric variables
Upper_tri <- function(cormat){
cormat[lower.tri(cormat)]<- NA
return(cormat)
}
upper_tri <- Upper_tri(cormat)
melted_cormat <- melt(upper_tri, na.rm = TRUE)
ggplot(data = melted_cormat, aes(Var2, Var1, fill = value))+
geom_tile(color = "white")+
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
midpoint = 0, limit = c(-1,1), space = "Lab",
name="Pearson\nCorrelation") +
theme_minimal()+
theme(axis.text.x = element_text(angle = 45, vjust = 1,
size = 14, hjust = 1))+
coord_fixed()
# correlogram
plot <- ggcorrmat( data = cordata,
type = "parametric", # parametric for Pearson
colors = c("darkred", "white", "steelblue") #default colors
)
plot
# display top 10 couples of variables by correlation coefficient at 5% significant level
top_10 <- corr_cross(clean,
max_pvalue = 0.05,
top = 10 )
top_10
## Correlation by Satisfaction.
satis_corr <- corr_var(data,
Satisfaction)
satis_corr
##correlation
cor_mat <-
data %>%
select(where(is.numeric), -c(id)) %>%
cor(use = "pairwise.complete.obs")
corrplot(
title = "\n\nCorrelation Matrix",
cor_mat,
method = "number",
order = "alphabet",
type = "lower",
diag = FALSE,
number.cex = 0.7,
tl.cex = 0.8,
tl.col = "darkgreen",
addgrid.col = "gray"
)
#Barplots
##1.Cleanliness
count1 = table(data$Cleanliness,data$Satisfaction)
barplot(count1,main = "Satisfaction over Cleanliness",
names.arg = c("Unsatisfied","Satisfied"),
xlab="Ratings",
col =rainbow(6),
density = 40,
legend.text = rownames(count1),
space = c(0.25, 2.5),
beside=TRUE)
#2
count2 = table(data$`Inflight entertainment`,data$Satisfaction)
barplot(count2,main = "Satisfaction over Inflight entertainment",
names.arg = c("Unsatisfied","Satisfied"),
xlab="Ratings",
col =rainbow(6),
density = 40,
legend.text = rownames(count2),
space = c(0.25, 2.5),
beside=TRUE)
#3.
count3 = table(data$`Leg room service`,data$Satisfaction)
barplot(count3,main = "Satisfaction over Leg room service",
names.arg = c("Unsatisfied","Satisfied"),
xlab="Ratings",
col =rainbow(6),
density = 40,
legend.text = rownames(count3),
space = c(0.25, 2.5),
beside=TRUE)
#4.
count4 = table(data$`Seat comfort`,data$Satisfaction)
barplot(count4,main = "Satisfaction over Seat comfort",
names.arg = c("Unsatisfied","Satisfied"),
xlab="Ratings",
col =rainbow(6),
density = 40,
legend.text = rownames(count4),
space = c(0.25, 2.5),
beside=TRUE)
#5.
count5 = table(data$`Checkin service`,data$Satisfaction)
barplot(count5,main = "Satisfaction over Checkin services",
names.arg = c("Unsatisfied","Satisfied"),
xlab="Ratings",
col =rainbow(6),
density = 40,
legend.text = rownames(count5),
space = c(0.25, 2.5),
beside=TRUE)
# Density/ histogram plots
#1
hist(data$`Flight Distance`,
col = c("#009999"),
border = "black",
prob = TRUE,
main = "Flight Distance Distribution plot",
xlab = "Flight Distance")
lines(density(data$`Flight Distance`),lwd = 2, col = "red")
#2.
hist(data$`Departure Delay in Minutes`,
col = c("#009999"),
border = "black",
prob = TRUE,
main = "Departure Delay Distribution plot",
xlab = "Departure Delay")
lines(density(data$`Departure Delay in Minutes`),lwd = 2, col = "red")
#3.
hist(data$`Arrival Delay in Minutes`,
col = c("#009999"),
border = "black",
prob = TRUE,
main = "Arrival Delay Distribution plot",
xlab = "Arrival Delay")
lines(density(data$`Arrival Delay in Minutes`),lwd = 2, col = "red")
#4.
hist(data$Age,
col = c("#009999"),
border = "black",
prob = TRUE,
main = "Age Distribution plot",
xlab = "Age")
lines(density(data$Age),lwd = 2, col = "red")
#Barplot for outliers
#let's look at the plot of outliers in numerical variables
cleaned_num<-select_if(data,is.numeric)%>%select(-id)
cleaned_num_p<-cleaned_num %>% gather(variable,values,1:18 )
options(repr.plot.width = 14, repr.plot.height = 8)
ggplot(cleaned_num_p)+
geom_boxplot(aes(x=variable,y=values),fill="cadetblue") +
facet_wrap(~variable,ncol=6,scales="free") +
theme(strip.text.x = element_blank(),
text = element_text(size=14))
#Checking histograms/ density plots of numeric variables
#1.
hist(data$`Departure Delay in Minutes`,
col = c("#009999"),
border = "black",
prob = TRUE,
main = "Departure Delay Distribution plot",
xlab = "Departure Delay")
lines(density(data$`Departure Delay in Minutes`),lwd = 2, col = "red")
#2.
hist(data$`Arrival Delay in Minutes`,
col = c("#009999"),
border = "black",
prob = TRUE,
main = "Arrival Delay Distribution plot",
xlab = "Arrival Delay")
lines(density(data$`Arrival Delay in Minutes`),lwd = 2, col = "red")
#3.
hist(data$Age,
col = c("#009999"),
border = "black",
prob = TRUE,
main = "Age Distribution plot",
xlab = "Age")
lines(density(data$Age),lwd = 2, col = "red")
###############################Model building##########################################
###############################decision tree########################
library(readxl)
View(satisfaction)
glimpse(satisfaction)
summary(satisfaction)
data = satisfaction
xtrain = data %>%select(-c('Arrival Delay in Minutes','Departure Delay in Minutes','Flight Distance','id','Age'))
#unique categories in categorical
unique(xtrain$satisfaction_v2)
xtrain$satisfaction_v2<-ifelse(xtrain$satisfaction_v2=="satisfied",1,0)
unique(xtrain$Gender)
xtrain$Gender<-ifelse(xtrain$Gender=='Female',0,1)
unique(xtrain$`Customer Type`)
xtrain$`Customer Type`<-ifelse(xtrain$`Customer Type`=='disloyal Customer',0,1)
unique(xtrain$`Type of Travel`)
xtrain$`Type of Travel`<-ifelse(xtrain$`Type of Travel`=='Personal Travel',0,1)
unique(xtrain$Class)
xtrain$Class <- as.numeric(factor(xtrain$Class))
unique(xtrain$Class)
######
set.seed(100)
training = createDataPartition(xtrain$satisfaction_v2,p=0.80,list=FALSE)
Train = xtrain[training,]
Test = xtrain[-training,]
Test = data.frame(Test)
#required libraries for decision tree
library(rpart)
library(rpart.plot)
library(caret)
#Running Decision trees
#running the model with significant variables
dtree = rpart(satisfaction_v2~., data=Train, method = 'class', minbucket = 25)
#Visualizing the Decision tree
#method 1
prp(dtree)
#method 2
rpart.plot(dtree)
#Optimization Part
# Defining cross-validation experiment
ctrl = trainControl( method = "cv", number = 10 )
cpGrid = expand.grid( .cp = seq(0.01,0.5,0.01))
FS = train(satisfaction_v2~.,data = Train,method = "rpart",trControl = ctrl, tuneLength = 25, tuneGrid = cpGrid )
#Analyzing the Importance of variable using the Variable Importance Plot
print(varImp(FS))
#plotting feature selection
plot(varImp(FS))
# Performing the cross validation
dtree2 = train(satisfaction_v2~., data = Train,method = 'rpart',trControl = ctrl, tuneLength = 25, tuneGrid = cpGrid )
print(dtree2)
#####Predicting the Values on the Train data
trainpredict = predict(dtree, Train)
#Confusion Matrix table to find accuracy for training data
table(Train$satisfaction_v2, trainpredict[,2]>0.7)
model_accuracy = (51370+36132)/(51370+36132+9834+6568)
model_accuracy #0.8421427
model_sensitivity = (36132)/(9834+36132)
model_sensitivity #0.7860593
model_precision = (36132)/(6568+36132)
model_precision #0.8461827
model_specificity = 51370/(51370+6568)
model_specificity # 0.8866374
model_F.measure = (2*model_sensitivity*model_precision)/(model_sensitivity+model_precision)
model_F.measure #0.8150136
#####Predicting the Values on the Test.Avg data
PredictROC = predict(dtree,Test)
#Confusion Matrix table to find accuracy for test data
table(Test$satisfaction_v2, PredictROC[,2] > 0.7)
accuracy = (2988+22133)/(2988+22133+348+507)
accuracy #0.967085
sensitivity = 22133/(2988+22133)
sensitivity #0.8810557
precision = 22133/(22133+507)
precision #0.977606
specificity = 348/(348+507)
specificity #0.4070175
F.measure = (2*sensitivity*precision)/(sensitivity+precision)
F.measure #0.9268231
############################logistic regression#############################################
log_model<- glm(satisfaction_v2~.,data=Train,family=binomial(link='logit'))
summary(log_model)
Train$new_pred_tr<- predict(log_model, Train,type='response')
Train<- Train %>% mutate(new_pred_trr= 1*(new_pred_tr > .53)+ 0)
Train <- Train %>% mutate(accurate =1*(new_pred_trr==satisfaction_v2))
sum(Train$accurate)/nrow(Train)
#0.809
h_train <- roc(Train$satisfaction_v2, Train$new_pred_trr)
h_train
plot(h_train)
#Area under the curve: 0.8023
#install.packages('InformationValue')
library(InformationValue)
optCutOff <- optimalCutoff(Train$satisfaction_v2, Train$new_pred_trr)[1]
#sensitivity(Train$satisfaction_v2, Train$new_pred_trr, threshold = optCutOff)
##model evaluation
cm <- table(Train$new_pred_trr, Train$satisfaction_v2)
cm
accuracy <- sum(cm[1], cm[4]) / sum(cm[1:4])
accuracy ##0.8082
precision <- cm[4] / sum(cm[4], cm[2])
precision##0.8023
sensitivity <- cm[4] / sum(cm[4], cm[3])
sensitivity #0.7517
fscore <- (2 * (sensitivity * precision))/(sensitivity + precision)
fscore #0.789
specificity <- cm[1] / sum(cm[1], cm[2])
specificity #0.8522
misClassError(Train$satisfaction_v2, Train$new_pred_trr, threshold = optCutOff)
#0.1906
plotROC(Train$satisfaction_v2, Train$new_pred_trr)
###test data evaluation
Test$model_prob<- predict(log_model,Test, type='response')
Test<- Test %>% mutate(model_pred= 1*(model_prob > .53)+ 0)
Test <- Test %>% mutate(accurate =1*(model_pred==satisfaction_v2))
sum(Test$accurate)/nrow(Test)
#0.93
#install.packages('InformationValue')
#library(InformationValue)
optCutOff <- optimalCutoff(Test$satisfaction_v2, Test$model_pred)[1]
sensitivity(Test$satisfaction_v2, Test$model_pred, threshold = optCutOff)
##model evaluation
cm <- table(Test$model_pred, Test$satisfaction_v2)
cm
accuracy <- sum(cm[1], cm[4]) / sum(cm[1:4])
accuracy ##0.934
precision <- cm[4] / sum(cm[4], cm[2])
precision## 0.9774
sensitivity <- cm[4] / sum(cm[4], cm[3])
sensitivity #0.953
fscore <- (2 * (sensitivity * precision))/(sensitivity + precision)
fscore #0.965
specificity <- cm[1] / sum(cm[1], cm[2])
specificity #0.3532
misClassError(Test$satisfaction_v2, Test$model_pred, threshold = optCutOff)
plotROC(Test$satisfaction_v2, Test$model_pred)
h <- roc(Test$satisfaction_v2, Test$model_pred)
h #0.6535
plot(h)
############################Random Forest###############################
## LIBRARIES
library(readxl)
install.packages("ggcorrplot")
library(readxl)
library(tidyverse)
library(ggcorrplot) # for the ggcorrplot function
library(interactions)
install.packages("caret")
library(caret)
install.packages("Hmisc") # forCorrelation between variables
library(Hmisc)
#Load Data
data <- data.frame(satisfaction)
View(data)
glimpse(satisfaction$satisfaction_v2)
#convert char to factor
data$satisfaction_v2 = as.factor(data$satisfaction_v2)
data$Gender = as.factor(data$Gender)
data$`Customer Type` = as.factor(data$`Customer Type`)
data$`Type of Travel` = as.factor(data$`Type of Travel`)
data$Class = as.factor(data$Class)
#Convert non-numeric variables to numeric
#data$satisfaction_v2<- as.numeric(as.factor(data$satisfaction_v2))
#data$Gender <- as.numeric(as.factor(data$Gender))
#data$`Customer Type`<- as.numeric(as.factor(data$`Customer Type`))
#data$`Type of Travel` <- as.numeric(as.factor(data$`Type of Travel`))
#data$Class <- as.numeric(as.factor(data$Class))
#removing unwanted attributes
d1 <- data
#training and test
training = createDataPartition(d1$satisfaction_v2,p=0.80,list=FALSE)
Train = d1[training,]
Test = d1[-training,]
library(ggplot2)
library(cowplot)
library(randomForest)
set.seed(100) # Setting seed
#On training data
r <- randomForest(satisfaction_v2 ~ Gender + Customer.Type +
Type.of.Travel+ Class+ Inflight.wifi.service +
Departure.Arrival.time.convenient +Ease.of.Online.booking+
Gate.location + Food.and.drink + Online.boarding + Seat.comfort +
Inflight.entertainment +On.board.service + Leg.room.service +
Baggage.handling + Checkin.service + Cleanliness +Online.support, data=Train, importance=TRUE, do.trace=100, ntree=1000)
print(r)
confusionMatrix(predict(r, Train), Train$satisfaction_v2)
confusionMatrix(predict(r, Test), Test$satisfaction_v2)
#plotting feature selection
varImpPlot(r)
plot(r)
Imp<-data.frame(importance(r))
write.csv(Imp,'C:\\Users\\sharm\\Desktop\\BA Sem 2\\ML & AI\\Assessment\\imprf.csv')
#Checking for Data balancing
barplot(prop.table(table(data$satisfaction_v2)),
col = rainbow(2),
ylim = c(0, 0.7),
main = "Class Distribution")
table(Train$satisfaction_v2)
barplot(prop.table(table(Train$satisfaction_v2)),
col = "green",
ylim = c(0, 0.7),
main = "Class Distribution")
prop.table(table(Train$satisfaction_v2))
#########################################Unsupervised- Kmeans##############################
#############################K-means with all variables####################
# Install pre-requisite package #
install.packages("stats")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("ggfortify")
install.packages("Hmisc")
install.packages("flexclust")
install.packages("NbClust")
install.packages("janitor")
# Load requyired libraries #
library(stats)
library(dplyr)
library(ggplot2)
library(ggfortify)
library(Hmisc)
library(tidyverse)
library(NbClust)
library(flexclust)
library(janitor)
# Unsupervised learning = Hence converting data to unlabbeled #
#total no of missing values in table
sum(is.na(satisfaction))
satisfactionn<-data.frame(satisfaction)
#Find the column names with missing values
colnames(satisfactionn)[colSums(is.na(satisfactionn)) > 0]
names(which(colSums(is.na(satisfactionn)) > 0))
#count total missing values in 'Arrival Delay in Minutes' column
sum(is.na(satisfactionn$`Arrival Delay in Minutes`))
#identify locations of missing values in 'Arrival Delay in Minutes' column
which(is.na(satisfactionn$`Arrival Delay in Minutes`))
#(2)Remove rows with NA (missing) values
data1 = na.omit(satisfactionn) # Method 1 - Remove NA
View(data1)
#(3)Convert character variables to factors
data1 <- data1 %>%
mutate(satisfaction_v2 = factor(satisfaction_v2))
data1 <- data1 %>%
mutate(Gender = factor(Gender))
data1 <- data1%>%
mutate(`Customer.Type` = factor(`Customer.Type`))
data1 <- data1 %>%
mutate(`Type.of.Travel`= factor(`Type.of.Travel`))
data1 <- data1 %>%
mutate(Class = factor(Class))
#Convert non-numeric variables to numeric
data1$satisfaction_v2<- as.numeric(as.factor(data1$satisfaction_v2))
data1$Gender <- as.numeric(as.factor(data1$Gender))
data1$`Customer.Type`<- as.numeric(as.factor(data1$`Customer.Type`))
data1$`Type.of.Travel` <- as.numeric(as.factor(data1$`Type.of.Travel`))
data1$Class <- as.numeric(as.factor(data1$Class))
unique(data1$Type.of.Travel)
#Converting Customer type and Type of travel
data1$Customer.Type[data1$Customer.Type == "Loyal Customer" ]<- 1
data1$Customer.Type[data1$Customer.Type == "disloyal Customer" ]<- 0
data1$Type.of.Travel[data1$Type.of.Travel == "Personal Travel" ]<- 1
data1$Type.of.Travel[data1$Type.of.Travel == "Business travel" ]<- 0
#converting into numeric for standardising the data
data1$Type.of.Travel<-as.numeric(data1$Type.of.Travel)
data1$Customer.Type<-as.numeric(data1$Customer.Type)
#Now we will be normalising the data so it is not bias
data_std<- scale(data1)
#Data after removing the Id
data_std<-data1[-c(1)]
rcorr(as.matrix(data_std))
glimpse(data_std)
# WSS plot for choosing optimum number of clusters #
wssplot <- function(data, nc=15, seed=1234)
{
wss <- (nrow(data)-1)*sum(apply(data,2,var))
for (i in 2 :nc){
set.seed(seed)
wss[i] <- sum(kmeans(data,centers=i)$withinss)}
plot(1:nc, wss, type='b', xlab="Number of clusters",
ylab="within groups sum of squares")
}
wssplot(data_std)
# K-means cluster #
km = kmeans(data_std,4)
km <- kmeans(data_std, centers = 4,iter.max = 1000, nstart = 100)
table(km$cluster)
print(km)
# Evaluating cluster analysis #
# cluster plot
autoplot(km,data_std,frame='True')
# cluster centers
km$centers