-
-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathsearch.py
62 lines (48 loc) · 1.63 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
def divide(points, N):
min = np.min(points)
max = np.max(points)
w = max - min
ind = np.empty_like(points,dtype=np.int32)
ind[:] = ((points - min)/w)*N
return ind, min, max, w
def search(point, points, ind, low, w, N):
pi = np.empty_like(point,dtype=np.int32)
pi[:] = ((point - low)/w)*N
found = False
r = 1
while not found:
pix = np.array([min(max(0,p),N-1) for p in range(pi[0]-r,pi[0]+r+1)], dtype=np.int32)
piy = np.array([min(max(0,p),N-1) for p in range(pi[1]-r,pi[1]+r+1)], dtype=np.int32)
piz = np.array([min(max(0,p),N-1) for p in range(pi[2]-r,pi[2]+r+1)], dtype=np.int32)
pidx = np.in1d(ind[:,0], pix)
pidy = np.in1d(ind[:,1], piy)
pidz = np.in1d(ind[:,2], piz)
pids = np.logical_and(pidx,np.logical_and(pidy,pidz))
diff = points[pids] - point
dist = np.einsum('ij,ij->i', diff, diff)
if len(dist):
i = np.argmin(dist)
id = np.flatnonzero(pids)[i]
return points[id],id,dist[i],r
r += 1
if __name__ == "__main__":
from time import time
PTS = 1000000
points = np.random.random(3 * PTS)
points.shape = -1,3
N=100
ind, lo, hi, w = divide(points,N)
#for p,i in zip(points,ind):
# print(p,i)
p = np.array([0.5,0.5,0.5])
start = time()
r = search(p, points, ind, lo, w, N)
print(time()-start)
print(p,r)
start = time()
diff = points - p
dist = np.einsum('ij,ij->i', diff, diff)
i = np.argmin(dist)
print(time()-start)
print(p, (points[i], i, dist[i]))