-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8_morphological_operations.py
39 lines (35 loc) · 1.21 KB
/
8_morphological_operations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 19 03:42:48 2019
@author: hp
"""
import cv2
import numpy as np
img = cv2.imread('sudoku_processed.png', 0)
kernel = np.ones((5, 5), np.uint8)
#erosion
erosion = cv2.erode(img, kernel, iterations = 1)
#dilation
dilation = cv2.dilate(img, kernel, iterations = 1)
#opening
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
#closing
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
#morphological gradient
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)
#top hat
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
#black hat
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
kernel2 = np.ones((1,1), np.uint8)
blackhat = cv2.erode(blackhat, kernel2, iterations = 1)
kernel2 = np.ones((1,1), np.uint8)
blackhat = cv2.dilate(blackhat, kernel2, iterations = 1)
ret, blackhat = cv2.threshold(blackhat, 10, 255, cv2.THRESH_BINARY)
blackhat = cv2.bitwise_not(blackhat)
images = [img, erosion, dilation, opening, closing, gradient, tophat, blackhat]
titles = ['original', 'erosion', 'dilation', 'opening', 'closing', 'gradient', 'tophat', 'blackhat']
for i in range(0,8):
cv2.imshow(titles[i], images[i])
cv2.waitKey(0)
cv2.destroyAllWindows()