-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
executable file
·271 lines (192 loc) · 7.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python2
from collections import defaultdict
import numpy as np
import pymongo
import config.data as g_config
import datasets
import logger
import ptcat
class Data(object):
def __init__(self):
self.client = pymongo.MongoClient()
self.db = self.client.topcoder
def is_challenge_ok(self, challenge):
if not g_config.is_challenge_type_ok(challenge[u"challengeType"]):
return False
return datasets.util.topcoder_is_ok(challenge)
def training_set(self):
condition = {
u"postingDate": {
u"$gte": g_config.begin_date,
u"$lt": g_config.end_date,
}
}
sorter = (u"postingDate", pymongo.DESCENDING)
for challenge in self.db.challenges.find(condition).sort(*sorter):
if self.is_challenge_ok(challenge):
yield challenge
def test_set(self):
condition = {
u"postingDate": {
u"$gte": g_config.end_date,
}
}
for challenge in self.db.challenges.find(condition):
if self.is_challenge_ok(challenge):
yield challenge
def _calc_duration(challenge, keyword):
posting_date = challenge[u"postingDate"]
end_date = challenge[keyword]
delta = end_date - posting_date
return delta.days
def _calc_max_working_days(challenge):
return _calc_duration(challenge, u"submissionEndDate")
def _calc_appeals_duration(challenge):
return _calc_duration(challenge, u"appealsEndDate")
class DlData(Data):
def __init__(self):
Data.__init__(self)
self.logger = logger.Logger()
self.logger.log(g_config.raw)
self.logger.log("----------")
self.user_win_times = None
self._count_user_win_times()
self.user_ids = {}
index = 0
for user in self.user_win_times:
if self.user_win_times[user] >= g_config.win_times_threshold:
self.user_ids[user] = index
index += 1
challenge_types = set()
self.nb_training = 0
self.nb_test = 0
for challenge in Data.training_set(self):
challenge_types.add(challenge[u"challengeType"])
self.nb_training += 1
for challenge in Data.test_set(self):
challenge_types.add(challenge[u"challengeType"])
self.nb_test += 1
self.challenge_type_ids = {}
for index, challenge_type in enumerate(challenge_types):
self.challenge_type_ids[challenge_type] = index
self.logger.log("Training set size: %d" % self.nb_training)
self.logger.log("Test set size: %d" % self.nb_test)
def _count_vital_features(self):
fake_line = {}
self._fill_line(fake_line, self.db.challenges.find()[0])
return len(fake_line)
def _ptcat_index(self):
nb_vital_features = self._count_vital_features()
def ptcat_index(platech):
index = ptcat.get_category(platech, g_config.categorize_platech)
return nb_vital_features + index - 1
return ptcat_index
def _count_user_win_times(self):
user_win_times = defaultdict(int)
for challenge in Data.training_set(self):
winner = datasets.util.topcoder_get_winner(challenge)
if winner is not None:
user_win_times[winner] += 1
self.user_win_times = user_win_times
self._output_user_win_times_stats()
def _output_user_win_times_stats(self):
max_win_times = 0
biggest_winner = None
for winner in self.user_win_times:
if max_win_times < self.user_win_times[winner]:
max_win_times = self.user_win_times[winner]
biggest_winner = winner
self.logger.log("Max win times: %d" % max_win_times)
self.logger.log("Biggest winner: " + biggest_winner)
def is_challenge_ok(self, challenge):
ok = Data.is_challenge_ok(self, challenge)
# count_user_win_times() refers this function
if ok and self.user_win_times is not None:
winner = datasets.util.topcoder_get_winner(challenge)
if winner is None:
return False
else:
return (self.user_win_times[winner] >=
g_config.win_times_threshold)
else:
return ok
def _validate_matrix(self, m, iterator):
ptcat_index = self._ptcat_index()
count = 20
for index, challenge in enumerate(iterator(self)):
if index % 5 != 0:
continue
for plat in challenge[u"platforms"]:
assert m[index, ptcat_index(plat)] == 1
for tech in challenge[u"technology"]:
assert m[index, ptcat_index(tech)] == 1
winner = datasets.util.topcoder_get_winner(challenge)
assert winner is not None
assert m[index, -1] == self.user_ids[winner]
assert self.user_win_times[winner] >= g_config.win_times_threshold
count -= 1
if count == 0:
break
def _fill_line(self, line, challenge):
index = 0
# First prize
line[index] = challenge[u"prize"][0]
index += 1
# Number of prize
line[index] = len(challenge[u"prize"])
index += 1
if False:
# TODO: Review type
line[index] = 1
index += 1
# Max working days
line[index] = _calc_max_working_days(challenge)
index += 1
if False:
# TODO: Type (develop, ...)
line[index] = 1
index += 1
# Challenge type (F2F, ...)
if len(g_config.challenge_type_whitelist) != 1:
line[index] = self.challenge_type_ids[challenge[u"challengeType"]]
index += 1
# Appeals duration in days
line[index] = _calc_appeals_duration(challenge)
index += 1
def _generate_matrix(self, nb_rows, iterator):
nb_vital_features = self._count_vital_features()
nb_platech = ptcat.get_number_of_platech(g_config.categorize_platech)
nb_cols = nb_vital_features + nb_platech + 1
ptcat_index = self._ptcat_index()
m = np.zeros((nb_rows, nb_cols), dtype=np.uint16)
for index, challenge in enumerate(iterator(self)):
line = m[index]
self._fill_line(line, challenge)
for plat in challenge[u"platforms"]:
line[ptcat_index(plat)] = 1
for tech in challenge[u"technology"]:
line[ptcat_index(tech)] = 1
winner = datasets.util.topcoder_get_winner(challenge)
assert winner is not None
line[nb_cols - 1] = self.user_ids[winner]
return m
def training_set(self):
return self._generate_matrix(self.nb_training, Data.training_set)
def test_set(self):
return self._generate_matrix(self.nb_test, Data.test_set)
def generate(self):
training_set = self.training_set()
self._validate_matrix(training_set, Data.training_set)
test_set = self.test_set()
self._validate_matrix(test_set, Data.test_set)
np.savetxt("datasets/training_topcoder.txt", training_set, fmt="%d")
np.savetxt("datasets/test_topcoder.txt", test_set, fmt="%d")
datasets.generate_developer_mappings("topcoder", self.user_ids)
self.logger.log("# distinct developers: %d" % len(self.user_ids))
self.logger.log("DONE!")
self.logger.save("topcoder-dataset")
def main():
data = DlData()
data.generate()
if __name__ == "__main__":
main()