forked from alaineiturria/otsad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
45 lines (45 loc) · 1.88 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Package: otsad
Type: Package
Title: Online Time Series Anomaly Detectors
Version: 1.0.0
Authors@R: c(
person("Alaiñe", "Iturria", email = "aiturria@ikerlan.es", role = c("aut","cre")),
person("Jacinto", "Carrasco", email = "jacintocc@decsai.ugr.es", role = c("aut")),
person("Francisco", "Herrera", email = "herrera@decsai.ugr.es", role = c("aut")),
person("Santiago", "Charramendieta", email = "scharramendieta@ikerlan.es", role = c("aut")),
person("Karmele", "Intxausti", email = "kintxausti@ikerlan.es", role = c("aut")))
Description: Implements a set of online fault detectors for time-series, called: PEWMA see M. Carter
et al. (2012) <doi:10.1109/SSP.2012.6319708>, SD-EWMA and TSSD-EWMA see H. Raza et al.
(2015) <doi:10.1016/j.patcog.2014.07.028>, KNN-CAD see E. Burnaev et al. (2016)
<arXiv:1608.04585>, KNN-LDCD see V. Ishimtsev et al. (2017) <arXiv:1706.03412>,
CAD-OSE see M. Smirnov (2018) <https://github.com/smirmik/CAD> and EORELM-AD see
Iturria (2021) <https://github.com/alaineiturria/otsad>. The first three
algorithms belong to prediction-based techniques and the last three belong to
window-based techniques. In addition, the SD-EWMA and PEWMA algorithms are algorithms
designed to work in stationary environments, while the other four
are algorithms designed to work in non-stationary environments.
Depends:
R (>= 4.1.0)
SystemRequirements:
Python (>= 3.0.1); bencode-python3 (1.0.2)
License: AGPL (>= 3)
URL: https://github.com/alaineiturria/otsad
BugReports: https://github.com/alaineiturria/otsad/issues
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.1
Suggests:
testthat,
stream,
knitr,
rmarkdown
Imports:
stats,
ggplot2,
plotly,
sigmoid,
reticulate,
pracma,
rlist,
R6
VignetteBuilder: knitr