-
Notifications
You must be signed in to change notification settings - Fork 160
/
plot_results.py
109 lines (87 loc) · 3.68 KB
/
plot_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import sys
import numpy as np
import json
import matplotlib.pyplot as plt
import gflags
import itertools
from sklearn.metrics import confusion_matrix
from common_flags import FLAGS
def make_and_save_histograms(pred_steerings, real_steerings,
img_name = "histograms.png"):
"""
Plot and save histograms from predicted steerings and real steerings.
# Arguments
pred_steerings: List of predicted steerings.
real_steerings: List of real steerings.
img_name: Name of the png file to save the figure.
"""
pred_steerings = np.array(pred_steerings)
real_steerings = np.array(real_steerings)
max_h = np.maximum(np.max(pred_steerings), np.max(real_steerings))
min_h = np.minimum(np.min(pred_steerings), np.min(real_steerings))
bins = np.linspace(min_h, max_h, num=50)
plt.hist(pred_steerings, bins=bins, alpha=0.5, label='Predicted', color='b')
plt.hist(real_steerings, bins=bins, alpha=0.5, label='Real', color='r')
#plt.title('Steering angle')
plt.legend(fontsize=10)
plt.savefig(img_name, bbox_inches='tight')
def plot_confusion_matrix(real_labels, pred_prob, classes,
normalize=False,
img_name="confusion.png"):
"""
Plot and save confusion matrix computed from predicted and real labels.
# Arguments
real_labels: List of real labels.
pred_prob: List of predicted probabilities.
normalize: Boolean, whether to apply normalization.
img_name: Name of the png file to save the figure.
"""
real_labels = np.array(real_labels)
# Binarize predicted probabilities
pred_prob = np.array(pred_prob)
pred_labels = np.zeros_like(pred_prob)
pred_labels[pred_prob >= 0.5] = 1
cm = confusion_matrix(real_labels, pred_labels)
plt.figure()
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
#plt.title("Confusion matrix")
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes)
plt.yticks(tick_marks, classes, rotation=90)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.savefig(img_name)
def _main():
# Compute histograms from predicted and real steerings
fname_steer = os.path.join(FLAGS.experiment_rootdir, 'predicted_and_real_steerings.json')
with open(fname_steer,'r') as f1:
dict_steerings = json.load(f1)
make_and_save_histograms(dict_steerings['pred_steerings'], dict_steerings['real_steerings'],
os.path.join(FLAGS.experiment_rootdir, "histograms.png"))
# Compute confusion matrix from predicted and real labels
fname_labels = os.path.join(FLAGS.experiment_rootdir,'predicted_and_real_labels.json')
with open(fname_labels,'r') as f2:
dict_labels = json.load(f2)
plot_confusion_matrix(dict_labels['real_labels'], dict_labels['pred_probabilities'],
['no collision', 'collision'],
img_name=os.path.join(FLAGS.experiment_rootdir, "confusion.png"))
def main(argv):
# Utility main to load flags
try:
argv = FLAGS(argv) # parse flags
except gflags.FlagsError:
print ('Usage: %s ARGS\\n%s' % (sys.argv[0], FLAGS))
sys.exit(1)
_main()
if __name__ == "__main__":
main(sys.argv)