diff --git a/daal4py/sklearn/cluster/_k_means_0_23.py b/daal4py/sklearn/cluster/_k_means_0_23.py index d0cf4723cf..669a0fcaf5 100755 --- a/daal4py/sklearn/cluster/_k_means_0_23.py +++ b/daal4py/sklearn/cluster/_k_means_0_23.py @@ -240,26 +240,27 @@ def _fit(self, X, y=None, sample_weight=None): are assigned equal weight (default: None) """ - if self.precompute_distances != 'deprecated': - if sklearn_check_version('0.24'): - warnings.warn("'precompute_distances' was deprecated in version " - "0.23 and will be removed in 1.0 (renaming of 0.25). It has no " - "effect", FutureWarning) - elif sklearn_check_version('0.23'): - warnings.warn("'precompute_distances' was deprecated in version " - "0.23 and will be removed in 0.25. It has no " - "effect", FutureWarning) - - if self.n_jobs != 'deprecated': - if sklearn_check_version('0.24'): - warnings.warn("'n_jobs' was deprecated in version 0.23 and will be" - " removed in 1.0 (renaming of 0.25).", FutureWarning) - elif sklearn_check_version('0.23'): - warnings.warn("'n_jobs' was deprecated in version 0.23 and will be" - " removed in 0.25.", FutureWarning) - self._n_threads = self.n_jobs - else: - self._n_threads = None + if hasattr(self, 'precompute_distances'): + if self.precompute_distances != 'deprecated': + if sklearn_check_version('0.24'): + warnings.warn("'precompute_distances' was deprecated in version " + "0.23 and will be removed in 1.0 (renaming of 0.25)." + " It has no effect", FutureWarning) + elif sklearn_check_version('0.23'): + warnings.warn("'precompute_distances' was deprecated in version " + "0.23 and will be removed in 0.25. It has no " + "effect", FutureWarning) + + self._n_threads = None + if hasattr(self, 'n_jobs'): + if self.n_jobs != 'deprecated': + if sklearn_check_version('0.24'): + warnings.warn("'n_jobs' was deprecated in version 0.23 and will be" + " removed in 1.0 (renaming of 0.25).", FutureWarning) + elif sklearn_check_version('0.23'): + warnings.warn("'n_jobs' was deprecated in version 0.23 and will be" + " removed in 0.25.", FutureWarning) + self._n_threads = self.n_jobs self._n_threads = _openmp_effective_n_threads(self._n_threads) if self.n_init <= 0: @@ -366,17 +367,29 @@ def _predict(self, X, sample_weight=None): class KMeans(KMeans_original): __doc__ = KMeans_original.__doc__ - @_deprecate_positional_args - def __init__(self, n_clusters=8, *, init='k-means++', n_init=10, - max_iter=300, tol=1e-4, precompute_distances='deprecated', - verbose=0, random_state=None, copy_x=True, - n_jobs='deprecated', algorithm='auto'): - - super(KMeans, self).__init__( - n_clusters=n_clusters, init=init, max_iter=max_iter, - tol=tol, precompute_distances=precompute_distances, - n_init=n_init, verbose=verbose, random_state=random_state, - copy_x=copy_x, n_jobs=n_jobs, algorithm=algorithm) + if sklearn_check_version('1.0'): + @_deprecate_positional_args + def __init__(self, n_clusters=8, *, init='k-means++', n_init=10, + max_iter=300, tol=1e-4, verbose=0, random_state=None, + copy_x=True, algorithm='auto'): + + super(KMeans, self).__init__( + n_clusters=n_clusters, init=init, max_iter=max_iter, + tol=tol, n_init=n_init, verbose=verbose, + random_state=random_state, copy_x=copy_x, + algorithm=algorithm) + else: + @_deprecate_positional_args + def __init__(self, n_clusters=8, *, init='k-means++', n_init=10, + max_iter=300, tol=1e-4, precompute_distances='deprecated', + verbose=0, random_state=None, copy_x=True, + n_jobs='deprecated', algorithm='auto'): + + super(KMeans, self).__init__( + n_clusters=n_clusters, init=init, max_iter=max_iter, + tol=tol, precompute_distances=precompute_distances, + n_init=n_init, verbose=verbose, random_state=random_state, + copy_x=copy_x, n_jobs=n_jobs, algorithm=algorithm) def fit(self, X, y=None, sample_weight=None): return _fit(self, X, y=y, sample_weight=sample_weight)