-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNeuralNetwork_1.2.m
139 lines (124 loc) · 4.08 KB
/
NeuralNetwork_1.2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% Intelligent Systems %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% NeuralNetwork 1.2 %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% Utsav Shah %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
clear all;
close all;
% tic;
%% Loading Data
data.image.all = dlmread('MNISTnumImages5000.txt');
data.label.all = dlmread('MNISTnumLabels5000.txt');
%% Defining Train and Test Data
data.image.train = data.image.all(1:4000,:);
data.image.test = data.image.all(4001:end,:);
data.label.train = data.label.all(1:4000,:);
data.label.test = data.label.all(4001:end,:);
%%
% Initializing Matrices
w_jk = 0.2 .* rand(200,785) - 0.1; % hidden layer - weight from input k to hidden neuron j
w_ij = 0.2 .* rand(784,201) - 0.1; % output layer - weight from hidden neuron j to output i
eta = 0.02; % learning rate
alpha = 0.2; % momentum
% dw_ij=zeros(784,201,4000);
% dw_jk=zeros(200,785,4000);
epoch=1;
while epoch==1 || J2(epoch-1)>=25000 % low value is 50 from previous
shuffle_indices=randperm(4000);
image_data=data.image.train(shuffle_indices,:);
J2(epoch)=0;
for q = 1:4000
x = image_data(q,:).'; % n = all columns = 784
y = x; % actual output
% Calculating s for hidden layer
s_j = w_jk * [1;x]; % hidden layer
h = perceptron(s_j); % hidden layer output which will be given to output layer input
s_i = w_ij * [1;h]; % output layer
y_hat = perceptron(s_i); % calculated output
error = y - y_hat; % calcuting error
J2(epoch) = J2(epoch) + (sum(error).^2); % loss function
% Back Propogation Algorithm
delta_i = error .* diffy(s_i);
if q==1
dw_ij = eta * delta_i*[1;h].';
else
dw_ij = eta * delta_i*[1;h].' + alpha * dw_ij;
end
delta_j=diffy(s_j) .* (w_ij(:,2:end).'*delta_i);
if q==1
dw_jk=eta*delta_j*[1;x].';
else
dw_jk = eta*delta_j*[1;x].' + alpha*dw_jk;
end
w_ij=w_ij+dw_ij;
w_jk=w_jk+dw_jk;
end
epoch=epoch+1;
end
% J2_train=sum(J2);
%% Testing, plotting outside loop
y_hat_test=zeros(784,1000);
J2_test=zeros(1000,1);
for q = 1:1000
x_test = data.image.test(q,:).'; % n = all columns = 784
y_test = x_test;
% Calculating s for hidden layer
s_j_test = w_jk * [1;x_test]; % hidden layer
h_test = perceptron(s_j_test); % hidden layer output which will be given to output layer input
s_i_test = w_ij * [1;h_test]; % output layer
y_hat_test (:,q)= perceptron(s_i_test); % calculated output
error_test = y_test-y_hat_test(:,q);
J2_test (q) = sum((error_test).^2);
end
J2_test = sum(J2_test);
% t = toc;
%%
figure(1)
bar([J2(end),J2_test],0.2);
ylabel('J_2 error');
set(gca,'XTickLabel',{'Training Set','Test Set'})
title('\bf{Loss Function Levels}')
%%
figure(2)
w1=w_jk(:,2:end);
index=reshape(1:200,20,10).';
for i=1:10
for j=1:20
subplot(10,20,index(i,j))
imshow(mat2gray(reshape(w1(index(i,j),:),28,28).'))
axis off
title(sprintf('%i',index(i,j)));
end
end
suptitle('\bf{Weights between input layer and hidden layer neurons (number in title)}')
%% Auto Encoder Network
plotx=zeros(28,28,1000);
ploty=zeros(28,28,1000);
for qqq=1:1000
plotx(:,:,qqq)=reshape(data.image.test(qqq,:),28, 28);
temp=y_hat_test((row-1)*28+1:row*28,qqq).';
ploty(:,:,qqq)=reshape(temp,28,28);
end
%
% Plotting 1st 100 test images,input
index=reshape(1:100,20,10).';
figure(3)
for i=1:10
for j=1:10
subplot(10,10,index(i,j))
imshow(mat2gray(plotx(:,:,index(i,j))))
axis off
end
end
% Plotting 1st 100 test images,output
figure(4)
for i=1:10
for j=1:10
subplot(10,10,index(i,j))
imshow(mat2gray(ploty(:,:,index(i,j))))
axis off
end
end
[yyy,Fs] = audioread('Tring.mp3');
sound(yyy,Fs);