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Diffusion Meets Flow Matching: Two Sides of the Same
Coin
Flow matching and diffusion models are two popular frameworks in generative modeling. Despite seeming similar, there is some confusion
in the community about their exact connection. In this post, we aim to clear up this confusion and show that diffusion models and
Gaussian �ow matching are the same, although different model speci�cations can lead to different network outputs and sampling
schedules. This is great news, it means you can use the two frameworks interchangeably.

Contents

Overview

Sampling

Training

Diving deeper into samplers

SDE and ODE perspective

Closing takeaways

Flow matching has gained popularity recently, due to the simplicity of its formulation and the “straightness” of its induced sampling trajectories. This raises the
commonly asked question:

"Which is better, diffusion or �ow matching?"

As we will see, diffusion models and �ow matching are equivalent (for the common special case that the source distribution used with �ow matching corresponds to a
Gaussian), so there is no single answer to this question. In particular, we will show how to convert one formalism to another. But why does this equivalence matter?
Well, it allows you to mix and match techniques developed from the two frameworks. For example, after training a �ow matching model, you can use either a
stochastic or deterministic sampling method (contrary to the common belief that �ow matching is always deterministic).

We will focus on the most commonly used �ow matching formalism with the optimal transport path , which is closely related to recti�ed �ow  and stochastic
interpolants . Our purpose is not to recommend one approach over another (both frameworks are valuable, each rooted in distinct theoretical perspectives, and it’s
actually even more encouraging that they lead to the same algorithm in practice), but rather to help practitioners understand and feel con�dent about using these
frameworks interchangeably, while understanding the true degrees of freedom one has when tuning the algorithm—regardless of what it’s called.

Check this Google Colab for code used to produce plots and animations in this post.

Overview
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We start with a quick overview of the two frameworks.

Diffusion models

A diffusion process gradually destroys an observed datapoint  (such as an image) over time , by mixing the data with Gaussian noise. The noisy data at time  is
given by a forward process:

 and  de�ne the noise schedule. A noise schedule is called variance-preserving if . The noise schedule is designed in a way such that  is close to
the clean data, and  is close to a Gaussian noise.

To generate new samples, we can “reverse” the forward process: We initialize the sample  from a standard Gaussian. Given the sample  at time step , we predict
what the clean sample might look like with a neural network (a.k.a. denoiser model) , and then we project it back to a lower noise level  with the same
forward transformation:

where . (Alternatively we can train a neural network to predict the noise .) We keep alternating between predicting the clean data, and projecting it
back to a lower noise level until we get the clean sample. This is the DDIM sampler . The randomness of samples only comes from the initial Gaussian sample, and
the entire reverse process is deterministic. We will discuss the stochastic samplers later.

Flow matching

In �ow matching, we view the forward process as a linear interpolation between the data  and a noise term :

This corresponds to the diffusion forward process if the noise is Gaussian (a.k.a. Gaussian �ow matching) and we use the schedule .

Using simple algebra, we can derive that  for , where  is the “velocity”, “�ow”, or “vector �eld”. Hence, to sample  given , we
reverse time and replace the vector �eld with our best guess at time : , represented by a neural network, to get

Initializing the sample  from a standard Gaussian, we keep getting  at a lower noise level than , until we obtain the clean sample.

Comparison

So far, we can already discern the similar essences in the two frameworks:

1. Same forward process, if we assume that one end of �ow matching is Gaussian, and the noise schedule of the diffusion model is in a particular form.

2. "Similar" sampling processes: both follow an iterative update that involves a guess of the clean data at the current time step. (Spoiler: below we will show they
are exactly the same!)

Sampling

It is commonly thought that the two frameworks differ in how they generate samples: Flow matching sampling is deterministic with “straight” paths, while diffusion
model sampling is stochastic and follows “curved paths”. Below, we clarify this misconception. We will focus on deterministic sampling �rst, since it is simpler, and will
discuss the stochastic case later on.

Imagine you want to use your trained denoiser model to transform random noise into a datapoint. Recall that the DDIM update is given by .
Interestingly, by rearranging terms it can be expressed in the following formulation, with respect to several sets of network outputs and reparametrizations:

Network Output Reparametrization

-prediction  and 

-prediction  and 

-�ow matching vector �eld  and 

Remember the �ow matching update in Equation (4)? This should look similar. If we set the network output as  in the last line and let , , we have
 and , which is the �ow matching update! More formally, the �ow matching update is a Euler sampler of the sampling ODE (i.e., ), and with

the �ow matching noise schedule,

Diffusion with DDIM sampler == Flow matching sampler (Euler).
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Some other comments on the DDIM sampler:

1. The DDIM sampler analytically integrates the reparametrized sampling ODE (i.e., ) if the network output is a constant over time.
Of course the network prediction is not constant, but it means the inaccuracy of DDIM sampler only comes from approximating the intractable integral of the
network output (unlike the Euler sampler of the probability �ow ODE  which involves an additional linear term of ). The DDIM sampler can be considered a
�rst-order Euler sampler of the repamemetrized sampling ODE, which has the same update rule for different network outputs. However, if one uses a higher-order
ODE solver, the network output can make a difference, which means the  output proposed by �ow matching can make a difference from diffusion models.

2. The DDIM sampler is invariant to a linear scaling applied to the noise schedule  and , as scaling does not affect  and . This is not true for other samplers
e.g. Euler sampler of the probability �ow ODE.

To validate Claim 2, we present the results obtained using several noise schedules, each of which follows a �ow-matching schedule ( ) with
different scaling factors. Feel free to change the slider below the �gure. At the left end, the scaling factor is , which is exactly the �ow matching schedule (FM), while
at the right end, the scaling factor is , which corresponds to a variance-preserving schedule (VP). We see that DDIM (and �ow matching sampler)
always gives the same �nal data samples, regardless of the scaling of the schedule. The paths bend in different ways as we are showing  (but not ), which is scale-
dependent along the path. For the Euler sampler of the probabilty �ow ODE, the scaling makes a true difference: we see that both the paths and the �nal samples
change.
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Wait a second! People often say �ow matching results in straight paths, but in the above �gure, the sampling trajectories look curved.

Well �rst, why do they say that? If the model would be perfectly con�dent about the data point it is moving to, the path from noise to data will be a straight line, with the
�ow matching noise schedule. Straight line ODEs would be great because it means that there is no integration error whatsoever. Unfortunately, the predictions are not
for a single point. Instead they average over a larger distribution. And �owing straight to a point != straight to a distribution.

In the interactive graph below, you can change the variance of the data distribution on the right hand side by the slider. Note how the variance preserving schedule is
better (straighter paths) for wide distributions, while the �ow matching schedule works better for narrow distributions.
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Finding such straight paths for real-life datasets like images is of course much less straightforward. But the conclusion remains the same: The optimal integration
method depends on the data distribution.

Two important takeaways from deterministic sampling:

1. Equivalence in samplers: DDIM is equivalent to the �ow matching sampler, and is invariant to a linear scaling to the noise schedule.

2. Straightness misnomer: Flow matching schedule is only straight for a model predicting a single point. For realistic distributions, other schedules can give
straighter paths.

Training

Diffusion models  are trained by estimating , or alternatively  with a neural net. Learning the model is done by minimizing a weighted
mean squared error (MSE) loss:

where  is the log signal-to-noise ratio, and  is the weighting function, balancing the importance of the loss at different noise levels. The term
 in the training objective seems unnatural and in the literature is often merged with the weighting function. However, their separation helps disentangle the

factors of training noise schedule and weighting function clearly, and helps emphasize the more important design choice: the weighting function.

Flow matching also �ts in the above training objective. Recall below is the conditional �ow matching objective used by  :

Since  can be expressed as a linear combination of  and , the CFM training objective can be rewritten as mean squared error on  with a speci�c weighting.

How do we choose what the network should output?

Below we summarize several network outputs proposed in the literature, including a few versions used by diffusion models and the one used by �ow matching. They
can be derived from each other given the current data . One may see the training objective de�ned with respect to MSE of different network outputs in the literature.
From the perspective of training objective, they all correspond to having some additional weighting in front of the -MSE that can be absorbed in the weighting
function.

Network Output Formulation MSE on Network Output

-prediction

-prediction

-prediction

-�ow matching vector �eld
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In practice, however, the model output might make a difference. For example,

-prediction can be problematic at high noise levels, because any error in  will get ampli�ed in , as  is close to 0. It means that small
changes create a large loss under some weightings.

Following the similar reason, -prediction is problematic at low noise levels, because  as a target is not informative when added noise is small, and the error gets
ampli�ed in .

Therefore, a heuristic is to choose a network output that is a combination of - and -predictions, which applies to the -prediction and the �ow matching vector �eld
.

How do we choose the weighting function?

The weighting function is the most important part of the loss. It balances the importance of high frequency and low frequency components in perceptual data such as
images, videos and audo . This is crucial, as certain high frequency components in those signals are not perceptible to humans, and thus it is better not to waste
model capacity on them when the model capacity is limited. Viewing losses via their weightings, one can derive the following non-obvious result:

Flow matching weighting == diffusion weighting of -MSE loss + cosine noise schedule.

That is, the conditional �ow matching objective in Equation (7) is the same as a commonly used setting in diffusion models! See Appendix D.2-3 in  for a detailed
derivation. Below we plot several commonly used weighting functions in the literature, as a function of .
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The �ow matching weighting (also -MSE + cosine schdule weighting) decreases exponentially as  increases. Empirically we �nd another interesting connection: The
Stable Diffusion 3 weighting , a reweighted version of �ow matching, is very similar to the EDM weighting  that is popular for diffusion models.

How do we choose the training noise schedule?

We discuss the training noise schedule last, as it should be the least important to training for the following reasons:

1. The training loss is invariant to the training noise schedule. Speci�cally, the loss fuction can be rewritten as , which

is only related to the endpoints ( , ), but not the schedule  in between. In practice, one should choose ,  such that the two ends are close
enough to the clean data and Gaussian noise respectively.  might still affect the variance of the Monte Carlo estimator of the training loss. A few heuristics have
been proposed in the literature to automatically adjust the noise schedules over the course of training. This blog post has a nice summary.

2. Similar to sampling noise schedule, the training noise schedule is invariant to a linear scaling, as one can easily apply a linear scaling to  and an unscaling at the
network input to get the equivalence. The key de�ning property of a noise schedule is the log signal-to-noise ratio .

3. One can choose completely different noise schedules for training and sampling, based on distinct heuristics: For training, it is desirable to have a noise schedule
that minimizes the variance of the Monte Carlo estimator, whereas for sampling the noise schedule is more related to the discretization error of the ODE / SDE
sampling trajectories and the model curvature.
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Summary

A few takeaways for training of diffusion models / �ow matching:

1. Equivalence in weightings: The weighting function is important for training, which balances the importance of different frequency components of perceptual
data. Flow matching weightings coincidentlly match commonly used diffusion training weightings in the literature.

2. Insigni�cance of training noise schedule: The noise schedule is far less important to the training objective, but can affect the training e�ciency.

3. Difference in network outputs: The network output proposed by �ow matching is new, which nicely balances - and -prediction, similar to -prediction.

Diving deeper into samplers

In this section, we discuss different kinds of samplers in more detail.

Re�ow operator

The Re�ow operation in �ow matching connects noise and data points in a straight line. One can obtain these (data, noise) pairs by running a deterministic sampler
from noise. A model can then be trained to directly predict the data given the noise avoiding the need for sampling. In the diffusion literature, the same approach was
the one of the �rst distillation techniques .

Deterministic sampler vs. stochastic sampler

So far we have just discussed the deterministic sampler of diffusion models or �ow matching. An alternative is to use stochastic samplers such as the DDPM sampler
.

Performing one DDPM sampling step going from  to  is exactly equivalent to performing one DDIM sampling step to , and then renoising to
 by doing forward diffusion. That is, the renoising by doing forward diffusion reverses exactly half the progress made by DDIM. To see this, let’s take a look at

a 2D example. Starting from the same mixture of Gaussians distribution, we can take either a small DDIM sampling step with the sign of the update reversed (left), or a
small forward diffusion step (right):

For individual samples, these updates behave quite differently: the reversed DDIM update consistently pushes each sample away from the modes of the distribution,
while the diffusion update is entirely random. However, when aggregating all samples, the resulting distributions after the updates are identical. Consequently, if we
perform a DDIM sampling step (without reversing the sign) followed by a forward diffusion step, the overall distribution remains unchanged from the one prior to these
updates.

The fraction of the DDIM step to undo by renoising is a hyperparameter which we are free to choose (i.e. does not have to be exact half of the DDIM step), and which
has been called the level of churn by . Interestingly, the effect of adding churn to our sampler is to diminish the effect on our �nal sample of our model predictions
made early during sampling, and to increase the weight on later predictions. This is shown in the �gure below:

x̂ ϵ̂ v̂

[11]
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λ  t λ  + Δλt λ  + 2Δλt

λ  + Δλt

[10]
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Here we ran different samplers for 100 sampling steps using a cosine noise schedule and -prediction . Ignoring nonlinear interactions, the �nal sample produced
by the sampler can be written as a weighted sum of predictions  made during sampling and a Gaussian noise : . The weights  of these
predictions are shown on the y-axis for different diffusion times  shown on the x-axis. DDIM results in an equal weighting of -predictions for this setting, as shown in

, whereas DDPM puts more emphasis on predictions made towards the end of sampling. Also see  for analytic expressions of these weights in the - and -
predictions.

SDE and ODE Perspective

We’ve observed the practical equivalence between diffusion models and �ow matching algorithms. Here, we formally describe the equivalence of the forward and
sampling processes using ODE and SDE, as a completeness in theory.

Diffusion models

The forward process of diffusion models which gradually destroys a data over time can be described by the following stochastic differential equation (SDE):

where  is an in�nitesimal Gaussian (formally, a Brownian motion).  and  decide the noise schedule. The generative process is given by the reverse of the forward
process, whose formula is given by

where  is the score of the forward process.

Note that we have introduced an additional parameter  which controls the amount of stochasticity at inference time. This is related to the churn parameter
introduced before. When discretizing the backward process we recover DDIM in the case  and DDPM in the case .

Flow matching

The interpolation between  and  in �ow matching can be described by the following ordinary differential equation (ODE):

Assuming the interpolation is , then .

The generative process is simply reversing the ODE in time, and replacing  by its conditional expectation with respect to . This is a speci�c case of stochastic
interpolants , in which case it can be generalized to an SDE:

v̂ [13]

v̂t e z0 = ∑t htv̂t + ∑t cte ht
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[13] [14] x̂ ϵ̂
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dz f  t g  t
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t

2
g2
t∇ log pt(zt))dt + ηtgtdz, (9)

∇ log p  t

η  t

η  = 0t η = 1t

x ϵ

dzt = utdt. (10)

zt = αtx + σtϵ ut = α̇tx + σ̇tϵ

ut zt

[3, 4]



where  controls the amount of stochasticity at inference time.

Equivalence of the two frameworks

Both frameworks are de�ned by three hyperparameters respectively:  for diffusion, and  for �ow matching. We can show the equivalence by deriving
one set of hyperparameters from the other. From diffusion to �ow matching:

From �ow matching to diffusion:

In summary, aside from training considerations and sampler selection, diffusion and Gaussian �ow matching exhibit no fundamental differences.

Closing takeaways

If you’ve read this far, hopefully we’ve convinced you that diffusion models and Gaussian �ow matching are equivalent. However, we highlight two new model
speci�cations that Gaussian �ow matching brings to the �eld:

Network output: Flow matching proposes a vector �eld parametrization of the network output that is different from the ones used in diffusion literature. The
network output can make a difference when higher-order samplers are used. It may also affect the training dynamics.

Sampling noise schedule: Flow matching leverages a simple sampling noise schedule  and , with the same update rule as DDIM.

It would be interesting to investigate the importance of these two model speci�cations empirically in different real world applications, which we leave to future work. It
is also an exciting research area to apply �ow matching to more general cases where the source distribution is non-Gaussian, e.g. for more structured data like protein

.
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