
LAB 3: Tension Detection of Rolling Metal Sheet 1

LAB 3: Tension Detection of
Rolling Metal Sheet
Tension Detection of Rolling Metal Sheet
Date: 2024-May-09

Author: Ignacio Manteca Escudero 22320052

Github: Ignacio Github

Introduction
1. Objective
Goal: This is a simplified industrial problem for designing a machine vision
system that can detect the level of tension in the rolling metal sheet.

The tension in the rolling process can be derived by measuring the curvature
level of the metal sheet with the camera.

The surface of the chamber and the metal sheet are both specular reflective
that can create virtual objects in the captured images. You need to design a
series of machine vision algorithms to clearly detect the edge of the metal
sheet and derive the curvature and tension level.

https://github.com/IgnacioTK/Lab2

LAB 3: Tension Detection of Rolling Metal Sheet 2

2. Preparation
For this lab we have used a computer with visual studio installed, as well as
python and the nummpy and openCV libraries. As for the sources used, a video
is attached, from which different screenshots have been taken to test the
programme.

Software Installation
OpenCV 4.9, Visual Studio 2022

Python 3.11.1

Dataset
Two different data sets have been used. First, the images provided in the
simple image data set were used. Once we managed to complete the exercise
with satisfactory results for this dataset, we moved on to the advanced image
data set, which improved the programme in certain aspects. Finally, a separate
program was also developed, which works directly with the video and not only
with the images obtained from it.

Dataset link:

Download the test images of

Simple dataset

https://github.com/IgnacioTK/DLIP-Lab3/tree/main/Simple%20dataset

LAB 3: Tension Detection of Rolling Metal Sheet 3

Challenging dataset

Video

Algorithm
1. Overview
The first thing we need to know is that we have two different programs. One is
used to open the images from the dataset (”Lab3.py”)and the other uses the
same analysis method but is designed to analyse video (”Lab3_video.py”). The
algorithm used and the processing method are the same, only the source is
different.
Therefore, I will only explain one of them as they are the same.

2. Procedure

Open image and separate channels
In the first step of our code we read the image we want to use from the dataset.
Because the original images are very large and we want to rescale them, we
use a series of ratios to keep the proportions of the original image. Because our
program works with image distances, if we rescale without keeping the
proportions of the original image, this can change our result.

After that, because the images in the dataset have a red illumination, I decided
to analyse the different outputs obtained from the RGB channels. And I saw that
the red channel would be easier to analyse, as it removes the noise and
highlights some areas of the metal plate which makes it easier to detect the
edges and thus the tension level.

Filtering
We then apply a medium filter, which removes noise and blurs everything
except the edges of the metal plates, to make them easier to detect and
prevent Canny from detecting false edges.

Select ROI

https://github.com/IgnacioTK/DLIP-Lab3/tree/main/Challenging%20dataset
https://github.com/IgnacioTK/DLIP-Lab3/blob/main/LAB3_Video.mp4
https://github.com/IgnacioTK/DLIP-Lab3/blob/main/Lab3.py
https://github.com/IgnacioTK/DLIP-Lab3/blob/main/Lab3_video.py

LAB 3: Tension Detection of Rolling Metal Sheet 4

This is because the image is very wide and there are various elements that can
make it difficult to detect the edge of the sheet metal. We choose an ROI that
allows us to select only the specific area where we need to analyse the image
to obtain the information of interest.

Edge Detection
Once we have selected our ROI to work with, we use the canny() function to
detect the edges and create a mask the size of the original image, to which we
then add the result of drawing our contours after using the findContours()
function.
We must remember that when we draw the results in our mask, we must add
the difference in height. This is because the borders have been calculated on
the region of interest and the mask has the size of the original image.

Point detection
Now that we have detected the edge of the metal plate, we want to know the
height of the lowest point of the plate so that we know how much tension it has.
To do this, we use a for loop that goes through all the points of the edge and
compares them to find the lowest point. And after comparing it with the levels
suggested by the exercise, we determine the level of tension that the metal
plate is at.

Remember that because of the resize we did in the beginning on the original
image. Now we must rescale all these calculated points so that they are
proportional to the original ones.

Figure 1. On the left we can see the result of the image after selecting the red channel and
applying the median filter, we can also see how the white area is selected to be our ROI. On

the right we have the original image after resizing.

LAB 3: Tension Detection of Rolling Metal Sheet 5

Further down in the code you can see a couple more processes which are
mainly graphical functions to display the results in a convenient way.

Result and Discussion
1. Final Result
The results obtained with both datasets are satisfactory and meet the
requirements. They clearly show the score, which is the number of pixels
between the point and the end of the image. They also show the stress level
and the lines that define each level. The programme works correctly for all the
images provided in both the simple and complex datasets.

As for the video. There are moments in the video where the edge detection fails
a bit and detects edges that are not of the metal plate. But these can be easily
corrected by adjusting the ROI to a narrower area centred on the metal plate
and this way correct results are obtained throughout the video.

2. Discussion
The results obtained work correctly with 100% accuracy when using images as
a data set. And for video, if the ROI is correctly selected, the program correctly
detects the voltage level practically throughout the video.

Conclusion

Figure 2. On the right is the original image, overlaid with the edges calculated by the Canny
function. And on the left we have a look at what our edge detection is getting.

LAB 3: Tension Detection of Rolling Metal Sheet 6

In this case, it is a good programme to detect the edges and the stress level of
the metal plates. To create a better program, the edge detection could be
improved and limited to one, so that only the edges of the metal plate are
detected, eliminating all the external edges that are not to be calculated.
A system to complete the curve formed by the metal plate could also be used.
Due to the lighting, gaps can sometimes appear in the detected curve.

Appendix
#Lab3.py Detecting using images from Dataset

import numpy as np

import cv2 as cv

Load image

img = cv.imread('C:/Users/Ignacio/source/repos/DLIP/PyOpenCvEx

original_heigth, original_with = img.shape[:2]

new_heigth = int((600 / original_with) * original_heigth)

img2 = cv.resize(img, (600,new_heigth))

cv.namedWindow('src', cv.WINDOW_AUTOSIZE)

cv.imshow('src', img2)

#Separate original images into colours chanels RGB

canal_azul, canal_verde, canal_rojo = cv.split(img2)

#Apply median filter to reduce noise and maintain edges

median = cv.medianBlur(canal_rojo,11)

#Select ROI

roi = cv.selectROI('Select ROI', median, fromCenter=False, sho

x, y, w, h = roi

roi_selected = median[y:y+h, x:x+w]

cv.destroyAllWindows()

#Detect the edges of the curve

LAB 3: Tension Detection of Rolling Metal Sheet 7

edges = cv.Canny(roi_selected, 120, 240,None, 3)

contours, _=cv.findContours(edges, cv.RETR_EXTERNAL, cv.CHAIN_

#Create a mask to draw contours

filled_image = np.ones_like(img2)

cv.drawContours(filled_image[y:y+h, x:x+w], contours, -1, (255

#Paint horizontal lines indicating the levels of tension

max_y = None

max_point_y = None

lvl1 = original_heigth - 250 #Level 1: >250px from the bottom

lvl1 = int((new_heigth / original_heigth) * lvl1)

lvl2 = original_heigth - 120 #Level 2: 120~250 px from the bo

lvl2 = int((new_heigth / original_heigth) * lvl2)

cv.line(filled_image, (0, lvl1), (600, lvl1), (0, 255, 255),

cv.line(filled_image, (0, lvl2), (600, lvl2), (255, 255, 0),

FInd the lowest point from the detected edge

for contorno in contours:

 for point in contorno.squeeze():

 if max_y is None or point[1] > max_y:

 max_y = point[1]

 max_point_y = point

Determine the level of tension

max_y = max_y + y

if(max_y<=lvl1):

 cv.circle(filled_image[y:y+h, x:x+w], max_point_y, 5, (0,

 color = (0, 255, 0)

 lvl = 1

elif(max_y>lvl1 and max_y<lvl2):

 cv.circle(filled_image[y:y+h, x:x+w], max_point_y, 5, (0,

 color=(0, 255, 255)

 lvl = 2

else:

 cv.circle(filled_image[y:y+h, x:x+w], max_point_y, 5, (255

 color=(255, 255, 0)

LAB 3: Tension Detection of Rolling Metal Sheet 8

 lvl = 3

Desing grafic elements and print

#The score value is calculated respect the new image size, tha

max_y = new_heigth - max_y

text1 = f"Score: {max_y}"

text2 = f"Level: {lvl}"

cv.putText(filled_image, text1, (400,50), cv.FONT_HERSHEY_SIMP

cv.putText(filled_image, text2, (400,100), cv.FONT_HERSHEY_SIM

cv.namedWindow('contours', cv.WINDOW_AUTOSIZE)

cv.imshow('contours', filled_image)

alpha = 0.5

imagen_superpuesta = cv.addWeighted(img2, 1 - alpha, filled_im

cv.namedWindow('imagen_superpuesta', cv.WINDOW_AUTOSIZE)

cv.imshow('imagen_superpuesta', imagen_superpuesta)

cv.waitKey(0)

cv.destroyAllWindows()

#Lab3_video.py Detecting using video as Dataset

import numpy as np

import cv2 as cv

Load image

img = cv.imread('C:/Users/Ignacio/source/repos/DLIP/PyOpenCv

original_heigth, original_with = img.shape[:2]

new_heigth = int((600 / original_with) * original_heigth)

img2 = cv.resize(img, (600,new_heigth))

cv.namedWindow('src', cv.WINDOW_AUTOSIZE)

cv.imshow('src', img2)

#Video

cap = cv.VideoCapture('C:/Users/Ignacio/source/repos/DLIP/PyO

if not cap.isOpened():

LAB 3: Tension Detection of Rolling Metal Sheet 9

 print("Error al abrir el video")

 exit()

ret, img = cap.read()

original_heigth, original_with = img.shape[:2]

new_heigth = int((600 / original_with) * original_heigth)

img2 = cv.resize(img, (600,new_heigth))

#Select ROI

roi = cv.selectROI('Select ROI', img2, fromCenter=False, showC

x, y, w, h = roi

cv.destroyAllWindows()

while cap.isOpened():

 ret, img = cap.read()

 img2 = cv.resize(img, (600,new_heigth))

 cv.imshow('Video', img2)

 #Separate original images into colours chanels RGB

 canal_azul, canal_verde, canal_rojo = cv.split(img2)

 #Apply median filter to reduce noise and maintain edges

 median = cv.medianBlur(canal_rojo,11)

 roi_selected = median[y:y+h, x:x+w]

 #Detect the edges of the curve

 edges = cv.Canny(roi_selected, 120, 240,None, 3)

 contours, _=cv.findContours(edges, cv.RETR_EXTERNAL, cv.CH

 #Create a mask to draw contours

 filled_image = np.ones_like(img2)

 cv.drawContours(filled_image[y:y+h, x:x+w], contours, -1,

 #Paint horizontal lines indicating the levels of tension

 max_y = None

LAB 3: Tension Detection of Rolling Metal Sheet 10

 max_point_y = None

 lvl1 = original_heigth - 250 #Level 1: >250px from the bo

 lvl1 = int((new_heigth / original_heigth) * lvl1)

 lvl2 = original_heigth - 120 #Level 2: 120~250 px from the

 lvl2 = int((new_heigth / original_heigth) * lvl2)

 cv.line(filled_image, (0, lvl1), (600, lvl1), (0, 255, 255

 cv.line(filled_image, (0, lvl2), (600, lvl2), (255, 255, 0

 # FInd the lowest point from the detected edge

 for contorno in contours:

 for point in contorno.squeeze():

 if max_y is None or point[1] > max_y:

 max_y = point[1]

 max_point_y = point

 # Determine the level of tension

 max_y = max_y + y

 if(max_y<=lvl1):

 cv.circle(filled_image[y:y+h, x:x+w], max_point_y, 5,

 color = (0, 255, 0)

 lvl = 1

 elif(max_y>lvl1 and max_y<lvl2):

 cv.circle(filled_image[y:y+h, x:x+w], max_point_y, 5,

 color=(0, 255, 255)

 lvl = 2

 else:

 cv.circle(filled_image[y:y+h, x:x+w], max_point_y, 5,

 color=(255, 255, 0)

 lvl = 3

 # Desing grafic elements and print

 #The score value is calculated respect the new image size

 max_y = original_heigth - max_y

 text1 = f"Score: {max_y}"

 text2 = f"Level: {lvl}"

 cv.putText(filled_image, text1, (400,50), cv.FONT_HERSHEY_

LAB 3: Tension Detection of Rolling Metal Sheet 11

 cv.putText(filled_image, text2, (400,100), cv.FONT_HERSHEY

 cv.namedWindow('contours', cv.WINDOW_AUTOSIZE)

 cv.imshow('contours', filled_image)

 alpha = 0.5

 imagen_superpuesta = cv.addWeighted(img2, 1 - alpha, fille

 cv.namedWindow('imagen_superpuesta', cv.WINDOW_AUTOSIZE)

 cv.imshow('imagen_superpuesta', imagen_superpuesta)

 if cv.waitKey(70) & 0xFF == ord('q'):

 break

/** @about LAB3 Tension Detection of Rolling Metal Sheet

