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Tpetra FY18 efforts

§ New Tpetra team
§ Define high-performance path through Tpetra
§ Reduce complexity of Tpetra code base
§ Increase robustness and usability of Tpetra

§ Finite Element Assembly (see talk by Tim Fuller, Chris Siefert)
§ Interfaces, performance optimizations, FEMultiVector, deprecation of DynamicProfile

§ Deprecations (see talk by Mark Hoemmen)
§ Template parameters (Global/local ordinal, Node); defaultPlatform

§ Documentation
§ User’s guide, examples for finite element assembly

§ Benchmark performance tests
§ https://github.com/trilinos/Trilinos/wiki/Tpetra-Information-Page



Tpetra FY19 Efforts

§ New capability to allow run-time decisions about which execution and memory 
spaces to use during operations
§ Related to Node deprecation

§ Application support:  performance portability of matrix assembly for GPU and KNL
§ Performance evaluation/remediation in applications; FECrsMatrix

§ Removal of deprecated features
§ Targeting Q3 removal; work with applications

§ Improved communication performance of Tpetra
§ Import/Export/Distributor
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STK Highlights

§ STK:  Mesh database developed in SIERRA, snapshotted into Trilinos
§ Working on improved GPU support in NGP-Mesh (built on Kokkos) this year

§ Integrating into SIERRA-TF, SIERRA-SM, Nalu-Wind

§ Trying to be responsive to Trilinos issues as well 
§ Recent GPU warnings issues are taking longer than expected to resolve

§ Using STK Balance (built on Zoltan2) in SIERRA-TF and SIERRA-SM for dynamic load 
balancing
§ If others are interested in using this capability, STK team would be happy to partner

§ PI:  Kendall Pierson



Have you noticed? (Probably not)

§ Package deprecations to remove obsolete, unsupported, untested code
§ MeshingGenie package – removed

§ Vorocrust (Mohamed Ebeida)

§ Stk_classic subpackage – removed
§ STK

§ ThreadPool package – PR #3725
§ Kokkos

§ Suggestions for others?



Trilinos-wide topics for Developer Day discussion

§ UVM / CUDA_LAUNCH_BLOCKING usage throughout Trilinos
§ Currently required in several packages, including Tpetra
§ If not needed in Tpetra, would other packages still need it?
§ Cost/benefit/requirements?

§ Deprecation and release schedule
§ Developer documentation (doxygen? wiki?)
§ Separation of Tpetra and Epetra stacks
§ Testing requirements on test-bed platforms (regarding MPI and compiler versions)
§ Use of boost in Trilinos – how necessary is it?  how remove warnings?
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Tpetra Finite Element Assembly

§ Motivation:
§ Provide matrix/vector construction that supports variety of application scenarios
§ Provide high-performance path on new architectures
§ Reduce maintenance costs within Tpetra code base

§ Deprecation of Dynamic Profile
§ User interfaces:

§ Type 1:  Simple global insertions
§ Type 2:  Two-map insertions
§ Type 3:  Applications with ghosted elements

§ Other optimizations
§ Other deprecations



Deprecation of Dynamic Profile

§ CrsGraph/CrsMatrix default for construction:  DynamicProfile
§ User did not have to provide correct information on number of nonzeros per row before 

inserting nonzeros

§ DynamicProfile requires dynamic memory allocation in Tpetra
§ Higher execution time
§ Current interface is infeasible on GPUs

§ DynamicProfile option is being removed now; Trilinos tests being updated.

CrsMatrix (const Teuchos::RCP<const map_type>& rowMap,
            size_t maxNumEntriesPerRow,
            ProfileType pftype = DynamicProfile,
            const Teuchos::RCP<Teuchos::ParameterList>& params = Teuchos::null);



Use StaticProfile

§ StaticProfile is already an option in Tpetra:  Applications can use it NOW
§ User provides either accurate max number of nonzeros per row OR 

actual number of nonzeros in each row
§ Tpetra allocates memory once before insertions
§ Tpetra will throw error if counts are insufficient; 

applications can then increase counts and try again

§ Application conversion:
§ Many applications already have needed nonzeros counts; 

give them to Graph/Matrix constructor with StaticProfile flag
§ Otherwise, applications need to compute nonzero counts and 

provide them to Graph/Matrix constructor with StaticProfile flag

§ Schedule:  all Tpetra code changes in place FY19 Q1;  DynamicProfile removed Q3.
§ Examples in Tpetra repository; will post to wiki



0 1 2 3 4 5 6 7 8
y0 0 X X X X x0
y1 1 X X X X X x1
y2 2 X X X x2
y3 = 3 X X X X X x3
y4 4 X X X X X X X x4
y5 5 X X X X X x5
y6 6 X X X x6
y7 7 X X X X X x7
y8 8 X X X X x8

Assumptions for this discussion

§ Element-based partition of mesh (i.e., elements owned uniquely by processes)
§ DOFs associated with mesh nodes
§ Mesh nodes have unique owner but may be copied (“shared”) on many processes
§ 1D partition of matrix by rows

Associated Matrix and VectorsMesh

[[0 1 4] 
[1 2 5] 
[5 4 1]
[4 3 0]
[3 4 7]
[4 5 8]
[8 7 4]
[7 6 3]]

Element connectivity
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Type 1 assembly:  Global insertions

§ Processor p can insert nonzeros into any processor’s rows
§ insertGlobalValues(…)

§ Tpetra uses map to build directory and send nonzeros to owning processors
§ globalAssemble(…) in fillComplete(…)

§ Advantages:
§ Simplest use-case for applications

§ Disadvantages:
§ Most expensive path for Tpetra – much off-processor discovery needed



Type 1 assembly:  Global insertions
§ Procedure:

1. Construct map
   owned_map = {owned DOFs}
   domain_map = owned_map
   range_map = owned_map

2. Construct graph
   owned_graph = Graph(owned_map)
   for each element e
       for each DOF n of e
           owned_graph.insertGlobalIndices(n, {all DOFs of e})
   owned_graph.fillComplete(domain_map, range_map)

3. Construct matrices
   owned_mat = Matrix(owned_graph)
   for each element e
       for each DOF n of e
           owned_mat.sumIntoGlobalValues(n, {all DOFs of e}, vals)
   owned_mat.fillComplete(domain_map, range_map)
     



MultiVector Assembly:: FEMultiVector
§ MultiVector’s sumIntoGlobalValue works only for global IDs in MultiVector’s map
§ But right-hand-side assembly contributes to shared DOF’s MultiVector values
§ User could manage with multiple maps & multivectors and Export
§ Easier alternative:  Tpetra::FEMultiVector
§ Implementation may or may not have two copies of vector data

§ If maps align, same storage used for both owned and owned+shared
§ Potential savings in memory and copy costs

0 1 2 3 4 5 6 7 8
0 X X X X x0
1 X X X X X x1
2 X X X x2
3 X X X X X x3
4 X X X X X X X x4
5 X X X X X x5
6 X X X x6
7 X X X X X x7
8 X X X X x8
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FEMultiVector Assembly
§ Procedure:

§ Notes:
§ Can use with Type 2 assembly as well
§ Coming soon:  FECrsGraph, FECrsMatrix

1. Build and fillComplete owned_graph CrsGraph as before

2. Construct FEMultiVector
   Tpetra::FEMultiVector femv(domain_map, owned_graph.getImporter())

3. Fill FEMultiVector
   femv.beginFill  // enables access to shared DOFs
   for each element e
       for each DOF n of e
          femv.sumIntoGlobalValue(n, val)
   femv.endFill    // exports with ADD; disables access to shared DOFs



Type 2 assembly:  Two maps/graphs/matrices

§ I.e., Local Element loop
§ FEMultiVector exploited two maps; can do same with matrices

§ Build two graphs & two matrices
§ Owned graph and matrix for owned DOFs
§ Shared graph & matrix for shared DOFs

§ Export shared graph & matrix to owned graph & matrix

§ Advantages:
§ Less discovery needed in Tpetra, so more efficient

§ Disadvantages:
§ More complex for user  (goal is to alleviate complexity with FECrsGraph, FECrsMatrix)



Type 2 Assembly:  Two maps/graphs/matrices
1. Construct two maps and exporter between them
   owned_map = {Owned DOFs};          
   shared_map = {Shared DOFs}
   exporter = Export(shared_map, owned_map)

2. Construct two graphs
   owned_graph = Graph(owned_map);    
   shared_graph = Graph(shared_map)
   for each element e
       for each DOF n of e
           if (n is owned) owned_graph.insertGlobalIndices(n, {all DOFs of e})
           else shared_graph.insertGlobalIndices(n, {all DOFs of e}) 
   shared_graph.fillComplete(domain_map, range_map)
   owned_graph.doExport(shared_graph, exporter, INSERT)
   owned_graph.fillComplete(domain_map, range_map)

3. Construct two matrices
   owned_mat = Matrix(owned_graph);    
   shared_mat = Matrix(shared_graph)
   <fill owned_mat and shared_mat with values as above>
   owned_mat.doExport(shared_mat, exporter, ADD)
   owned_mat.fillComplete(domain_map, range_map)



Type 3 Assembly:  Total element loop

§ For applications with a layer of element copies around part boundary
§ Ghost elements, aura, total-element-loop

§ All computations for owned DOFs can be done locally
§ No contributions to shared DOFs

§ Application needs only owned map
§ Application can use local indexing

§ Advantage:
§ All insertions are local; no export needed

§ Disadvantage:
§ Not all applications have ghost elements
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Type 3 Assembly:  Total element loop

§ Procedure:
1. Construct map
   owned_map = {owned DOFs}

2. Construct graph
   owned_graph = Graph(owned_map)
   for each owned and ghost element e
       for each owned DOF n of e
           owned_graph.insertLocalIndices(n, {all DOFs of e})
   owned_graph.fillComplete(domain_map, range_map)

3. Construct matrices
   owned_mat = Matrix(owned_graph)
   for each owned and ghost element e
       for each owned DOF n of e
           owned_mat.sumIntoLocalValues(n, {all DOFs of e}, vals)
   owned_mat.fillComplete(domain_map, range_map)
     



Optimizations:  Local indexing and  
Kokkos::StaticCrsGraph
§ Especially easy for Type 3 assembly

§ Using local indices to fill graph/matrix/vector 
§ avoids conversion from global to local through lookup table
§ E.g., insertLocalIndices(), insertLocalValues()

§ Can provide three Kokkos::Views for CRS arrays (rowOffsets, columnIndices, values) 
and row/column maps to CrsMatrix constructor
§ See Tpetra tutorial Trilinos/packages/tpetra/core/example/Lesson07-Kokkos-Fill

§ Similarly, can provide Kokkos::StaticCrsGraph 



Optimizations:  exploit mesh info

§ Many applications already know owning processor of shared mesh nodes
§ Allow Tpetra to use this information when available

§ Nalu simulation of a Vestas wind turbine on 12,288 Haswell cores on NERSC's Cori
§ reduced matrix initialization costs from 109 seconds to 84.5 seconds (22.5% reduction)

1. Construct map
   row_map = {owned DOFs}
   Import importer (row_map, {owned+shared DOFs}, 
                             {processors owning the DOFs})
   column_map = importer.getTargetMap()

2. Construct graph
   owned_graph = Graph(row_map, column_map)
   … 



Optimizations: column map layout

§ If specifying column map, Aztec-style layout of column map may be best
§ Owned entries first
§ Followed by shared entries, grouped by owning processor

§ Allows fewer copies during MPI communication
§ Communicate directly to/from memory
§ No need to gather into buffers

§ May reduce communication time in MatVec
§ makeOptimizedColMapAndImport creates new column map from row map and old 

column map



Optimizations:  Contiguous DOF numbering

§ Tpetra allows arbitrary numbering of owned rows
§ Directory used to lookup off-processor IDs

§ Default Trilinos ordering is most efficient
§ Rows 0 to N0 on rank zero
§ Rows N0+1 to N1 on rank one
§ Rows N1+1 to N2 on rank two
§ Etc.

§ Enables fast, simple lookup of IDs during Import/Export construction
§ Directory is trivial



Resources

§ Tpetra tutorials
§ Trilinos/packages/tpetra/core/examples/tutorial

§ Finite-element assembly examples (Types 1, 2, 3)
§ Trilinos/packages/tpetra/core/examples/Finite-Element-Assembly

§ Tpetra wiki
§ https://github.com/trilinos/Trilinos/wiki/Tpetra-Information-Page

§ FY18 Tpetra team
§ Geoff Danielson  Mark Hoemmen  Chris Luchini  Christian Trott
§ Karen Devine  Jonathan Hu  Will McLendon
§ Tim Fuller   Kyungjoo Kim  Chris Siefert

https://github.com/trilinos/Trilinos/wiki/Tpetra-Information-Page

