
Open Access | https://doi.org/10.25080/HWGA5253

SciPy 2024
July 8 - July 14, 2024

Proceedings of the 23nd

Python in Science Conference
ISSN: 2575-9752

Making Research Data Flow With Python
Josh Borrow ¹ , Paul La Plante

2,3 , James Aguirre ¹ , and Peter K. G.
Williams ⁴

¹ Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street,
Philadelphia, PA, USA 19104, ² Department of Computer Science, University of Nevada, Las Vegas, NV
89154, ³ Nevada Center for Astrophysics, University of Nevada, Las Vegas, NV 89154, ⁴ Center for
Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138

Published Jul 10, 2024

Correspondence to
Josh Borrow
josh@joshborrow.com

Open Access

Copyright © 2024 Borrow et
al.. This is an open-access
article distributed under the
terms of the Creative Commons
Attribution 4.0 International li-
cense, which enables reusers
to distribute, remix, adapt, and
build upon the material in any
medium or format, so long as
attribution is given to the cre-
ator.

Abstract

The increasing volume of research data in fields such as astronomy, biology, and engineering
necessitates efficient distributed data management. Traditional commercial solutions are
often unsuitable for the decentralized infrastructure typical of academic projects. This paper
presents the Librarian, a custom framework designed for data transfer in large academic
collaborations, designed for the Simons Observatory (SO) as a ground up re-architechture of
a previous astronomical data management tool called the ‘HERA Librarian’ from which it takes
its name. SO is a new-generation observatory designed for observing the Cosmic Microwave
Background, and is located in the Atacama desert in Chile at over 5000 meters of elevation.

Existing tools like Globus Flows, iRODS, Rucio, and Datalad were evaluated but were found
to be lacking in automation or simplicity. Librarian addresses these gaps by integrating with
Globus for efficient data transfer and providing a RESTful API for easy interaction. It also
supports transfers through the movement of physical media for environments with intermit-
tent connectivity.

Using technologies like Python, FastAPI, and SQLAlchemy, the Librarian ensures robust,
scalable, and user-friendly data management tailored to the needs of large-scale scientific
projects. This solution demonstrates an effective method for managing the substantial data
flows in modern ‘big science’ endeavors.

Keywords data, python, research

1. Introduction
Research data is ever-growing, with even small projects now producing terabytes of data.
This has been matched by an increase in the typical size of workstation storage and
compute, but as many fields like astronomy, biology, and engineering continue their march
towards ‘big science’, distributed data analysis is becoming significantly more common.
As such, there is a significant need for software that can seamlessly track and move data
between sites without continuous human intervention. For the very largest of these projects
(such as the Large Hadron Collider at CERN), massive development effort has been invested
to create technologies for data pipelining, but these tools typically assume a high level of
control over the software and hardware that is running for the project.

At the same time, data science and data analytics are becoming a larger part of industrial
infrastructure, even in what appear to be non-technical fields like law, commerce, and
media. This has led to a huge increase in data engineering and pipelining software, but this
software is generally only available through private clouds like those provided by Amazon
(Amazon Web Services), Microsoft (Azure), and Alphabet (Google Cloud). These services
generally assume that there is an ingest point into one of their managed storage (e.g.

July 10, 2024 1 of 11

https://en.wikipedia.org/wiki/Open_access
https://en.wikipedia.org/wiki/Open_access
https://doi.org/10.25080/HWGA5253
https://orcid.org/0000-0002-1327-1921
https://orcid.org/0000-0002-1327-1921
mailto:josh@joshborrow.com
mailto:josh@joshborrow.com
https://orcid.org/0000-0002-4693-0102
https://orcid.org/0000-0002-4693-0102
mailto:paul.laplante@unlv.edu
mailto:paul.laplante@unlv.edu
https://orcid.org/0000-0002-4810-666X
https://orcid.org/0000-0002-4810-666X
mailto:jaguirre@sas.upenn.edu
mailto:jaguirre@sas.upenn.edu
https://orcid.org/0000-0003-3734-3587
https://orcid.org/0000-0003-3734-3587
mailto:pwilliams@cfa.harvard.edu
mailto:pwilliams@cfa.harvard.edu
mailto:josh@joshborrow.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Making Research Data Flow With Python | Borrow et al., 2024

Amazon S3), using their compute and tools for analysis (e.g. Amazon Athena and Amazon
EC2), and their tools for final data egress (e.g. Amazon API Gateway or Amazon QuickSight).
These resources are mature, performant, and a result of hundreds of thousands or millions
of developer-hours. However, they are not compatible with the current publicly-funded
science model, or the way that large, distributed, academic collaborations work.

A monolithic stack like those provided by public clouds is almost antithetical to large,
distributed, academic projects. In these projects, funding may come from a vast array
of sources (e.g. faculty members funded through their institution, large funding agencies
like the National Science Foundation, or more junior members funded through individual
fellowships), and compute may be provided by many different providers at different scales
(e.g. on-premises with the data source, small institutional Tier-2 or Tier-3 centers, or inter-
national-scale Tier-0 centers through an allocation). Pooling these funds and resources is an
almost insurmountable challenge; aside from some $10 B+ projects, even ‘massive’ multi-
hundred million dollar projects must design their staffing, software, and procedures for
a level of flexibility (and, by corollary, simplicity) that would be incomprehensible in an
industrial context.

This paper is about solving the base-level problem: how to get raw experiment data totaling
around 1 PB a year from a remote site (in our case, the top of a mountain in Chile), to various
science consumers distributed across the globe. Our data is comprised of folders (termed
‘books’), each containing 10-20 GB of data, laid out in a pre-determined scheme in a POSIX
filesystem.

2. Comparing Data Flows
In Figure 1, we show two example data flows: one for a commercial enterprise (on the top),
and one for a typical academic project (bottom; this matches closely with the needs of the
Simons Observatory).

A typical challenge for the commercial scenario is collating data from many different
sources, and processing it in a latency-sensitive manner. Consider an e-commerce platform,
which has sales data, market research, and user tracking data, which all need to be
collected and normalised to make decisions. This data, though varied, is typically small
(and all ‘owned’ in some sense by the company), meaning that it can all be placed inside
one centralised data warehouse from which analysis can be performed, and data egress
can take place (often through a shared service). Because these services must all be directly
acquired by the business, they are all at a bare minimum highly configurable and scalable. It
can hence make sense to either use a series of interconnecting services (e.g. those provided
through the Apache Software Foundation if using on-premises hardware), or a managed
service collection (e.g. using tools from AWS). The data flows, represented by arrows in this
case, are then made much simpler, and specific business logic can be programmed around
the assumption of a shared and well-known interface; this hence leads to our understanding
of these interconnected services through the data producers, flows, and products.

For an academic project, there is usually one major data source, and analysis is usually
compute-intensive. This could be an experiment or, in our case, an observatory. Connected
to this experiment there is typically a small on-site data storage and analysis facility that
repackages data and can perform simple analysis. Those running the experiment usually
have complete control over only this platform; the rest are highly locked-down shared
computing services like national facilities (e.g. NERSC) and university-managed clusters -
funding agencies typically do not support the purchase of significant compute resources,
as they maintain shared high performance computing clusters. An important corollary to
this is that different facilities may have different resources available, for instance cold

July 10, 2024 2 of 11

Making Research Data Flow With Python | Borrow et al., 2024

Sales

Research

Tracking

Experiment

National Facility

Core Analysis

Additional
Analysis

Time-Sensitive
Events

Data Release

Publication

Web Services

Local Clusters

On-site
Compute and

Storage

Data
Warehouse

Analysis

Web Services

Dashboard

Reports
Egress

Performed on owned or configurable hardware

Performed on owned or
configurable hardware

Figure 1. Showing a typical layout of a commercial data engineering structure (top) versus an academic
one (bottom). In a commercial context, it is typical that a significantly higher fraction of the resources
are owned (or are directly configurable, e.g. cloud services) by the user. It is also much more common to
have a centralised ‘data warehouse’ or ‘data lake’ which provides ingress and egress for all data products.
In the academic context, only a very small fraction of the compute and storage are typically owned by
stakeholders. National facilities, and even local clusters at universities, are typically rigid and cannot be
re-configured to better suit the needs of an individual experiment. Further, due to limited compute and
storage constraints, it is likely that multiple copies of experimental data must be kept at various sites, and
tight control needs to be maintained on the specific sub-sets of data stored at each.

storage for archival data, accelerators, or high-memory nodes. Data must be managed with
the understanding that these resources may have finite lifetimes, may be withdrawn, or
replaced at a completely different site. Further, as there is no centralised provider, data
replication must be managed ‘manually’ by the collaboration through their network of
shared machines, both for integrity and for availability at the sites that have different
compute resources. Working on the data, specific archival products are produced: either
those included in a data release (e.g. images, maps, etc.), and publications. Both regulation
and community standards typically leads to these products being immutable and available
forever, hosted by an external service. This reliance on external compute and storage leads
to our understanding of this workflow through the flow of data into and out of the afore-
mentioned providers.

Though they may have varied locations and resources, the computing centers are all usually
organised in a broadly similar way, with dedicated data ingest (or transfer) nodes with a fast
‘grid’ internet connection (e.g. Internet2 in the U.S., JISC in the U.K., etc.) and access to shared
disks. Compute is managed via a job scheduler (e.g. slurm), with file storage provided on
GPFS or Lustre (i.e. POSIX-like, not object store) systems. As such, much of the community
software has been built with the strong assumption that data is stored in files on a high-
performance POSIX-compliant filesystem, with analysis performed through job submission

July 10, 2024 3 of 11

Making Research Data Flow With Python | Borrow et al., 2024

to compute nodes. Any data management system for such projects must hence be designed
to be compatible with this workflow.

In the specific case of the Simons Observatory [1], we have a need for a piece of software
to bring down data from our observatory at the rate of around 20 TB a week. This is
accomplished using SneakerNet, where physical media is used to transport data, and a
fiber internet connection. Our data is immutable, and in the form of ‘books’ (structured
directories of binary data), within a pre-determined directory structure that must be repli-
cated exactly on all of the downstream sites. At certain downstream sites, we have space
for all of the data from the entire project, but at others only a recent, rolling, sub-set may
be maintained.

2.1. Existing Software
Because of the significantly different constraints in the academic world versus the commer-
cial world, there is a relatively limited set of tools that can be used to accomplish the goal of
automated data management and transfer. In our search, we evaluated the following tools:

2.1.1. Globus:

Globus [2], [3] is a non-profit service from the University of Chicago, and specialises in the
batch transfer of large data products. Globus works by having an ‘endpoint server’ running
at each location, which can communicate over HTTP. Through the use of their web interface,
API, or command-line client, it is possible to request asynchronous transfers of massive
amounts of data, which are transferred at close to line speeds thanks to GridFTP being used
for the underlying data movement. Globus is used extensively in the academic community,
and is already available ubiquitously throughout the academic cluster ecosystem.

Globus, however, is not an automated tool; in general, one must tell Globus how, where, and
when to move data. It is possible to set up recurring synchronisations of data, but this either
requires complete copy at all sites (lest data that was just deleted be moved again) or that
all sub-tasks be expressible as part of a ‘Globus Flow’, which may not always be possible.
As such, Globus is more of a ‘data transfer’ tool, than a data management tool. It does not
have significant cataloguing capability.

2.1.2. Rucio and iRODS:

Rucio [4] is a distributed data management system that was originally designed for the
ATLAS high-energy physics experiment at the LHC, and as such is extremely scalable (i.e.
exabytes or more). Rucio can be backed by different levels of storage, from fast (SSD) to slow
(tape), and is declarative (meaning that one simply asks the system to follow a set of rules,
like ‘keep three copies of the data’), with its own user and permissions management system.
Rucio is an exceptionally capable piece of software, but this comes with significant com-
plexity. Further, data is managed externally to the underlying filesystem and permissions
model of the host, potentially causing issues with the user agreements at shared facilities,
and interacting with data generally requires interaction with the Rucio API. Though Rucio
is certainly a fantastic tool, we found that it was too integrated for our needs of simply
transferring data, and the declarative system is incompatible with our need to leverage
SneakerNet.

A similar, albeit older and more mature, project to Rucio is iRODS (the integrated rule-
oriented data system; R. Consortium [5]). iRODS, being more mature, integrates nicely with
lots of software (providing a FUSE mount, FTP client integration, and more), and can likely
be a perfect solution for someone looking for fully integrated data management. However,
as it is built on a foundation of rule-based data management, it was discovered to be
incompatible with our need to tightly control the specific transfers taking place.

July 10, 2024 4 of 11

Making Research Data Flow With Python | Borrow et al., 2024

2.1.3. Datalad and git-annex:

The git-annex [6] tool is an extension to Git, the version control system, to handle large
quantities of binary data. Due to its extensive use by home and small business users, it
explicitly supports SneakerNet transfers between sites, but is hampered by the fact that it
relies on Git to track files (though not explicitly their contents; git-annex tracks checksums
instead), which can become slow as repository size scales.

Datalad [7] is effectively a frontend for git-annex with a significant feature pool, and is
used extensively in the bioscience community. For projects with small-to-medium size data
needs, Datalad would be an exceptional candidate, but as we expect to need to manage
multiple petabytes of data over a variety of storage needs, it was unfortunately not appro-
priate for the Simons Observatory.

3. The Librarian
After much consideration, the collaboration decided that building an orchestration and
tracking framework on top of Globus was most appropriate. In addition, there was an
existing piece of software used for the Hydrogen Epoch of Reionization Array (HERA) [8],
a radio telescope designed to study the early Universe, called the ‘HERA Librarian’ [9], [10]
that provided some of the abstractions that were required, though it was not suitable for
production use for the much larger Simons Observatory. The HERA Librarian used a signif-
icant number of shell commands over SSH in its underlying architecture, and was designed
to be fully synchronous. This lead to a complete re-write of the Librarian, primarily to
eliminate these deficiencies, but also to migrate the application to a more modern web
framework. There are a few key design concepts that were carried over from the HERA
Librarian:

• There is a distinction drawn between ‘Files’ and ‘Instances’ of files in

the Librarian; a given server may know that ‘File’ exists but not actually have direct access
to a copy of the underlying data.

• Files are immutable, enforced through checksumming, making synchronization

between Librarians uni-directional and much simpler.
• Instances of the Librarian server are free-standing and are loosely-coupled,

meaning that long outages or network downtime do not cause significant issues.

The Librarian¹ is made up of five major pieces:

1. A FastAPI² server that allows access through a REST HTTP API.
2. A database server (postgres³ in production, SQLite⁴ for

development) to track state and provide atomicity.
1. A background task⁵ thread that performs data-intensive operations

like checksumming, local cloning, and scheduling of transfers.
1. A background transfer thread that manages the transfer queue and communicates

with Globus to query status.
1. A Python and associated command-line client for interacting with the API.

¹https://github.com/simonsobs/librarian
²https://fastapi.tiangolo.com
³https://www.postgresql.org
⁴https://www.sqlite.org
⁵https://schedule.readthedocs.io/en/stable/index.html

July 10, 2024 5 of 11

https://github.com/simonsobs/librarian
https://fastapi.tiangolo.com
https://www.postgresql.org
https://www.sqlite.org
https://schedule.readthedocs.io/en/stable/index.html

Making Research Data Flow With Python | Borrow et al., 2024

Crucially, the background threads can directly access the database, without having to inter-
act with the HTTP server. This reduces the level of ‘CRUD’ (create, read, update, delete) API
code that is required for the project significantly, by allowing (e.g.) locking of database rows
currently being transferred directly, rather than having this be handled through a series
of API calls. These background tasks are scheduled automatically using the lightweight
schedule library.

The Librarian is a specialized tool that excels in reproducing the data and layout of a POSIX-
compatible filesystem on a system with downstream nodes in a loosely-coupled manner, all
whilst maintaining tight control on how data is transferred. The Librarian is open source
and available through GitHub⁶, under the BSD-2-Clause license.

3.1. Technology Choices
For this project, it was crucial that we used the Python language, as this is the lingua
franca of the collaboration; all members have at least some knowledge of Python. No
other language comes close (by a significant margin), and all analysis tools use Python. In
addition, Globus provide a complete source development kit for Python⁷. As our analysis
tools will eventually communicate with the Librarian, and its REST API, it also made sense
to employ pydantic⁸ to develop the communication schema. By using pydantic, we could
ensure that responses and requests were serialized and de-serialized by the exact same
models, reducing both development time and errors significantly. With pydantic models as
our base data structure, it was natural to choose FastAPI for the web server component.

In an ideal case, we would have used SQLModel to further reduce code duplication in the
database layer. However, at the outset of the project, SQLModel⁹ was still in very early devel-
opment, and as such it made sense to use SQLAlchemy¹⁰ as our object-relational mapping
(ORM) to translate database operations to object manipulation.

3.2. Service Layout
The Librarian service is relatively simple; it allows for the ingestion of ‘files’ (which can
themselves be directories containing many files) into a unified namespace, and this name-
space can be synchronised with other sites using Globus. In this section we will give a brief

Experiment
Data

Main Store

ChecksumStaging Area

Source Librarian Destination Librarian

upl
oadsta

ge

com
ple
te

Main Store

ChecksumStaging Area

clone
stage

complete

Globus
background
transfer

Figure 2. Showing data ingest (green) and cloning between Librarian instances (orange). Data flows from
the experiment, through a staging area, and to a main store, before being picked up by the background
task (clocks) and copied by Globus in the background to the remote staging area. On the remote end, once
the data is marked as being staged, the background task picks it up, checksums it, and it is marked as
stored. More information on this process is available in the main text.

⁶https://github.com/simonsobs/librarian
⁷https://globus-sdk-python.readthedocs.io/en/stable/index.html
⁸https://docs.pydantic.dev/latest/
⁹https://sqlmodel.tiangolo.com
¹⁰https://www.sqlalchemy.org

July 10, 2024 6 of 11

https://github.com/simonsobs/librarian
https://globus-sdk-python.readthedocs.io/en/stable/index.html
https://docs.pydantic.dev/latest/
https://sqlmodel.tiangolo.com
https://www.sqlalchemy.org

Making Research Data Flow With Python | Borrow et al., 2024

overview of the key abstractions at place and the data flow within the application. This
process is summarised in Figure 2.

In contrast to many other tools, and to the ‘HERA Librarian’ which preceeded the Librarian,
files carry minimal science metadata along with them through the system. We found that
metadata systems attached to data flow and management systems often lacked necessary
features and caused significant complications (such as needing frequent database migra-
tions) when coupled. As such, we chose to explicitly delegate metadata management to
other subsystems within the project, focusing only on file transfers.

3.2.1. User and Librarian Management:

During the initial setup of the system, an administrator user is provisioned to facilitate
further management tasks. This primary administrator has the ability to create additional
user accounts through the librarian command-line tool.

Both ‘users’ (i.e. those interacting with the system to ingest data) and ‘Librarians’ (other
copies of the application running on other systems) need accounts. These accounts can be
configured with different levels of permissions to suit various needs. Specifically, accounts
can be granted full administrator privileges, read and append only privileges, or callback-
only privileges. Callback-only privalages are crucial for remote sites like telescopes, as
they ensure that downstream Librarians only have extremely limited access to both the
underlying data and its associated metadata. To ensure security, user passwords are salted
and hashed in the database using the Argon2¹¹ algorithm. The API employs HTTP Basic
Authentication for user verification and access control.

3.2.2. Storage Management:

In the Librarian system, storage is abstracted into entities known as ‘stores’. These stores
are provisioned during the setup process and can be migrated with a server restart. Each
store comprises two components: a staging area for ingested files and a main store area,
which has a global namespace for permanently storing data. While stores can have any
underlying structure, they must provide methods for both ingestion and egress of data. In
all current use cases, we employ a ‘local store’, which is a thin wrapper around a POSIX
filesystem.

Stores provide two methods for data ingestion: transfer managers and async transfer man-
agers. Transfer managers are synchronous, and for the ‘local store’, this involves a simple
local file copy. Async transfer managers, on the other hand, are asynchronous and are
used for inter-Librarian transfers, typically employing Globus for this purpose. Individual
storage items are referred to as ‘files’, which can denote either individual files or directories.

Stores on the same device log all the ‘instances’ of ‘files’ they contain in the database.
Additionally, all files can have ‘remote instances’, which are known instances of files located
on another Librarian.

3.2.3. Data Ingestion:

Data ingestion follows a systematic process using accounts that have read and append
privileges. Initially, a request to upload is made to the Librarian web server prompting it
to create a temporary UUID-named directory in the staging area. Simultaneously, the client
computes a checksum for the file. The server then provides this UUID and a set of transfer
managers to the client.

¹¹https://pypi.org/project/argon2-cffi/

July 10, 2024 7 of 11

https://pypi.org/project/argon2-cffi/

Making Research Data Flow With Python | Borrow et al., 2024

Next, the client selects the most appropriate transfer manager to copy the file to the staging
area. Once the file transfer is complete, the client informs the server of the completion. The
server then verifies that the checksum matches the one provided in the upload request. If
the checksums are consistent, the server ingests the file into the storage area.

From the client’s perspective, the upload is extremely simple:

from hera_librarian import LibrarianClient
from hera_librarian.settings import client_settings
from pathlib import Path

client_info = client_settings.connections.get(
 "my_librarian_name"
)

client = LibrarianClient.from_info(client_info)

client.upload(
 Path("name_of_a_file_on_disk.txt"),
 Path("/hello/world/this/is/a/file.txt")
)

This then leads to a synchronous uploading of the local file to the global namespace, with
upload returning once this is complete and, crucially, the upload is verified (via a checksum)
by the server. For most applications, this fire-and-forget technique is all that is required;
if upload returns successfully, the file is guaranteed to have been correctly uploaded to the
server and is ready for use and export.

3.2.4. Data Cloning:

Data can be cloned in two main ways: locally and remotely. Local cloning involves making
a copy to a different store on the same Librarian, which is often used for SneakerNet. This
process is straightforward and handled by a single task that creates a copy on the second
device and updates the database.

Remote cloning, on the other hand, is a more complex, multi-stage process. Initially, files
without remote instances on the target Librarian are collated into a list. Outgoing transfers
are then created in the database to track progress. These transfers are grouped into batches
of 128 to 1024 files to be packaged in a single Globus transfer, due to the limitation that there
can only be 100 listed Globus transfers.

A request is made to the destination Librarian to batch stage clones of these files, creating
a UUID directory for each. The batch transfer is placed in the queue on the local Librarian.
The transfer thread picks up this batch and sends it using Globus, periodically polling for
status updates on the transfer. Once the transfer is complete, the source Librarian notifies
the destination Librarian that the files are staged. The ‘receive clone’ background task on the
destination Librarian picks up the staged files and verifies them against known checksums.
Once verified, the files are placed in the main store, and a callback is generated to the source
Librarian to complete the transfer and register a new remote instance.

3.2.5. Data Access:

Data can be accessed through the Librarian, by querying it for the location of individual
instances of a file. However, because our stores generally just wrap the POSIX filesystem,
users typically already know a-priori where the files that they need to access are, through
the use of other science product databases. As such, data access is generally as simple as
opening the file; it is where users expect it to be.

3.3. Data Down the Mountain

July 10, 2024 8 of 11

Making Research Data Flow With Python | Borrow et al., 2024

Experiment
Data

Main Store Main StoreSneaker
Drive

Physical
transport
of disks

HTTP Callback

Sneaker
Drive

ChecksumManifest

Manifest

Source Librarian Destination Librarian

Drive
Alert

Server

Figure 3. Showing the SneakerNet flow between two Librarian instances. The sneaker drive is physically
moved between computing sites, alongside a manifest of all files on the drive, to complete transfers in
large batches.

In the specific case of an observatory, there is an additional challenge here: lines repre-
senting data flows in Figure 2 no longer simply show bytes sent over HTTP connections to
highly available services, but instead represent potentially interruptible inter-continental
data movement. In the specific case of the Simons Observatory, the main data flow from
the telescope (which is at 5000 meters above sea level in the Atacama Desert) to the main
computing center (NERSC, a national facility on the west coast of the U.S.) is fraught with
challenges.

The main internet connection from the telescope to the nearest town was, for a long time, a
low-bandwidth radio link. This has now been (thankfully) replaced with a high throughput
fiber connection, but given that this link may go down at any time due to the remote
placement of the site (and no backup), another way to offload the data is required. The
observatory produces around 20 TB of data a week, which is much more than the 50 MBit/
s radio link can transfer; either way, that bandwidth is required for other uses. This neces-
sitates a more primitive solution: so-called ‘SneakerNet’ transfers, where data is carried by
hand on physical media.

SneakerNet transfers are supported natively by the Librarian, and occur through the
following steps (as shown in Figure 3):

• A new store is provisioned that refers to the mounted drive that will be

carried in the process.
• A local clone background task catches up on missing files to this drive and,

as new files come in, copies them too.
• Once full, the server sends an alert (implemented using Slack notifications)

to administrators.
• Administrators use the command-line Librarian tools to generate a ‘manifest’

of all files on the device: their checksums, names, etc.
• The drive is hand-carried to the destination, and ingested.
• The Librarian command-line tools are again used to ingest the manifest and

copied files.
• As the files are ingested, HTTP callbacks are made to the source Librarian to

convert the local ‘instance’ rows on the sneaker drive to ‘remote instance’ rows for the
destination Librarian.

• The drive is re-formatted and carried back.

July 10, 2024 9 of 11

Making Research Data Flow With Python | Borrow et al., 2024

This is an unusual process, but comes in extremely handy in bandwidth constrained,
remote, environments.

3.4. Testing
Testing complex data flows like those represented in the Librarian is a notoriously difficult
task. For instance, testing the components that make up the SneakerNet workflow means
being able to test two interacting web-servers, each backed by a database, with several
additional threads running in the background. To aid with this goal, we make heavy use of
dependency injection and integration testing, alongside more traditional unit testing.

For services that cannot be ‘easily’ replicated, like Globus, we make sure to always use
dependency injection. Dependency injection is a technique where downstream functions
and objects ‘receive’ the things that they require as arguments or parameters. One signif-
icant example where this is used in the Librarian is the transfer managers: by having the
server tell the client how it can move data, you can return appropriate managers for testing.
Instead of using a Globus transfer (which requires setting up an external server, and regis-
tering it with Globus), one can instead return a transfer manager that simply wraps rsync or
a local copy instead, and test all the same code paths except the one line that actually moves
the data. The component that performs the Globus transfer is then tested separately in a
more appropriate environment, ensuring that it conforms to the exact same specification
as the local copy manager. Another example is our database: thanks to SQLAlchemy, and
appropriate design patterns, we can very easily swap out our production postgres database
for SQLite during development, enabling much more simple testing patterns.

In an attempt to avoid ‘dependency hell’, we have developed a testing platform that heavily
leverages pytest-xprocess¹² and pytest fixtures. Using this tool, one can create a real, live,
running Librarian server in a separate process. This is used to test the interaction between
client and server, and for end-to-end tests of the SneakerNet and inter-Librarian cloning
process. Because this server is running locally, it makes it possible to directly query the
database for testing, which we have found to be invaluable. The only drawback to this
approach is that it is not possible to get test coverage for the lines that are performed inside
the xprocess fork.

3.5. Deployment Details
As we have made a relatively straightforward selection of technologies, and the fact that
the Librarian is a small application (less than 10′000 lines), deployment is a simple process.
In addition, it makes it straightforward to explain the code paths that are taken by the
Librarian.

Currently, we deploy Librarian using Docker. We require one container for the FastAPI
server, and one for postgres, which are usually linked using helm charts (at NERSC) or
docker compose (on other systems). We provide access to the database for Grafana dash-
boards, and have Slack integrations for both logging and notifications.

The focus on simplicity that we have made for the Librarian has made deployment simple;
system administrators within the academic community are very familiar with Globus, and
have been happy to assist with deployments of Librarian orchestration framework.

4. Conclusions
In this paper, we addressed the significant challenges faced by large academic collabora-
tions in managing and transferring massive datasets across distributed sites. We evaluated
existing data management tools such as Globus Flows, Rucio, iRODS, and Datalad, identi-

¹²https://pytest-xprocess.readthedocs.io/en/latest/

July 10, 2024 10 of 11

https://pytest-xprocess.readthedocs.io/en/latest/

Making Research Data Flow With Python | Borrow et al., 2024

fying their limitations in terms of automation, complexity, and compatibility with academic
workflows.

Our solution, the Librarian was developed to meet these specific needs. By integrating with
Globus, Librarian enables efficient, asynchronous data transfers. The system also supports
SneakerNet, which is essential for environments with limited or intermittent connectivity
like our observatory, facilitating physical data transfers through portable storage.

The use of widely adopted technologies such as Python, FastAPI, and SQLAlchemy ensures
that Librarian is robust, scalable, and user-friendly. Its design aligns well with the decen-
tralized and diverse infrastructure typical of academic projects, providing a practical and
efficient method for handling the immense data flows inherent in modern ‘big science’
endeavors.

Librarian has demonstrated its effectiveness through its deployment at the Simons Obser-
vatory, highlighting its potential as a versatile and reliable data management solution for
large-scale scientific collaborations. We provide Librarian as free, open source, software to
the community.

Acknowledgements

JB acknowledges support from NSF grant AST-2153201. This material is based upon work
supported by the National Science Foundation under Grant Nos. 1636646 and 1836019 and
institutional support from the HERA collaboration partners. This research is funded in part
by the Gordon and Betty Moore Foundation through Grant GBMF5212 to the Massachusetts
Institute of Technology.

References

[1] P. Ade et al., “The Simons Observatory: science goals and forecasts,” \jcap, vol. 2019, no. 2, p. 56, 2019, doi:
10.1088/1475-7516/2019/02/056.

[2] I. Foster, “Globus Online: Accelerating and Democratizing Science through Cloud-Based Services,” IEEE Internet
Computing, vol. 15, no. 3, pp. 70–73, 2011, doi: 10.1109/MIC.2011.64.

[3] B. Allen et al., “Software as a service for data scientists,” Commun. ACM, vol. 55, no. 2, pp. 81–88, 2012, doi:
10.1145/2076450.2076468.

[4] M. Barisits et al., “Rucio: Scientific Data Management,” Computing and Software for Big Science, vol. 3, no. 1, p.
11, 2019, doi: 10.1007/s41781-019-0026-3.

[5] R. Consortium, “iRODS.” [Online]. Available: https://irods.org/

[6] J. Hess, “git-annex.” [Online]. Available: https://git-annex.branchable.com/

[7] Y. O. Halchenko et al., “DataLad: distributed system for joint management of code, data, and their relationship,”
Journal of Open Source Software, vol. 6, no. 63, p. 3262, 2021, doi: 10.21105/joss.03262.

[8] D. R. DeBoer et al., “Hydrogen Epoch of Reionization Array (HERA),” \pasp, vol. 129, no. 974, p. 45001, 2017,
doi: 10.1088/1538-3873/129/974/045001.

[9] P. La Plante, P. K. G. Williams, and J. S. Dillon, “Developing a Real-Time Processing System for HERA,” URSI Radio
Science Letters, vol. 2, p. 41, 2020, doi: 10.46620/20-0041.

[10] P. La Plante et al., “A Real Time Processing system for big data in astronomy: Applications to HERA,” Astronomy
and Computing, vol. 36, p. 100489, 2021, doi: 10.1016/j.ascom.2021.100489.

July 10, 2024 11 of 11

https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1145/2076450.2076468
https://doi.org/10.1007/s41781-019-0026-3
https://irods.org/
https://git-annex.branchable.com/
https://doi.org/10.21105/joss.03262
https://doi.org/10.1088/1538-3873/129/974/045001
https://doi.org/10.46620/20-0041
https://doi.org/10.1016/j.ascom.2021.100489

	Introduction
	Comparing Data Flows
	Existing Software
	Globus
	Rucio and iRODS
	Datalad and git-annex

	The Librarian
	Technology Choices
	Service Layout
	User and Librarian Management
	Storage Management
	Data Ingestion
	Data Cloning
	Data Access

	Data Down the Mountain
	Testing
	Deployment Details

	Conclusions
	Acknowledgements
	References

