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Abstract. In this paper, we rethink sparse lexical representations for
image retrieval. By utilizing multi-modal large language models (M-
LLMs) that support visual prompting, we can extract image features and
convert them into textual data, enabling us to utilize efficient sparse re-
trieval algorithms employed in natural language processing for image re-
trieval tasks. To assist the M-LLM in extracting image features, we apply
data augmentation techniques for key expansion and analyze the impact
with a metric for relevance between images and textual data. We empir-
ically show the superior precision and recall performance of our image
retrieval method compared to conventional vision-language model-based
methods on the MS-COCO, PASCAL VOC, and NUS-WIDE datasets
in a keyword-based image retrieval scenario, where keywords serve as
search queries. We also demonstrate that the retrieval performance can
be improved by iteratively incorporating keywords into search queries.
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1 Introduction

As deep learning technologies have evolved, deep neural networks (DNNs) have
achieved exceptional performance in image recognition and object detection
tasks [14, 15, 21, 42], and approaches leveraging these networks have been ex-
tensively explored for image retrieval tasks [13,50,59,61]. With the recent emer-
gence and widespread adoption of vision-language models [18, 25, 39, 63], text-
to-image retrieval has become one of the mainstream research areas in image
retrieval. These models are pre-trained on vast amounts of paired image-text
data collected from the internet, and they learn to map the images and their
corresponding texts into similar dense vector representations in a shared latent
space [18, 25, 39]. By utilizing such pre-trained models, images that are seman-
tically similar or related to a query text can be retrieved based on the distance
calculations between their dense vectors.

Images can contain a wide variety of information and features, and the criteria
to determine whether images are similar or dissimilar are inherently subjective
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and not uniquely defined. For instance, when retrieving images, the features
that users focus on within images may vary depending on individual preferences
and situational factors. However, a query does not always represent or reflect a
user’s desires or intentions, and it could be incomplete or lacking in required in-
formation to specify them. Despite these limitations, the vision-language model
attempts to provide results that are relevant to the user’s request, by implicitly
compensating for the lack of information in the incomplete query based on the
knowledge acquired through training. Unfortunately, this compensated informa-
tion may not always align with the user’s desires or intentions.

In text retrieval, a keyword-based approach is commonly employed in practi-
cal applications to retrieve documents containing specified keywords. Users can
combine multiple keywords as search queries to specify their focus areas or top-
ics. After viewing the retrieval results, users can iteratively refine their search
queries by modifying and/or adding keywords as feedback. Even if the retrieval
model cannot initially provide the desired results, users can adaptively obtain
results that align with their preferences or intentions through this iterative pro-
cess. In the light of these flexible capabilities, we aim to explore better methods
for applying keyword-based retrieval to image retrieval tasks.

While we can directly apply the conventional vision-language models to the
keyword-based retrieval, we cannot overlook the substantial advancements in
large language models (LLMs) over the past few years, which have demonstrated
a remarkable ability to comprehend context within dialogue interfaces [5, 34,
47, 53–55]. Additionally, multi-modal LLMs (M-LLMs) have already been pro-
posed to comprehend visual information within images through visual prompt-
ing, which involve processing images along with textual data as queries [4,9,22,
24,28,29]. By utilizing the advanced capabilities of M-LLMs, we can extract fea-
tures from images and linguistically represent them in textual data like tags and
captions. Then, we can leverage the advantages of natural language processing
(NLP) techniques for image retrieval tasks. We encode the generated textual
data into sparse lexical vectors and utilize efficient retrieval algorithms to enable
effective image retrieval based on their sparse lexical representations.

In this paper, we focus on the text-to-image retrieval task and rethink the task
in this age of rising such powerful M-LLMs. As a text-to-image retrieval task, we
consider a keyword-based image retrieval scenario where a search query consists
of a few words representing the contents or objects depicted in images. Through
quantitative analysis on the benchmark datasets, we demonstrate that our re-
trieval system outperforms conventional vision-language model-based retrieval
methods in terms of precision and recall. Specifically, we introduce a cropping
technique to assist the M-LLM in effectively extracting image features, and an-
alyze the effectiveness by evaluating a metric for relevance between images and
texts. As our findings, we empirically show that the conventional vision-language
model-based methods outperform our approach, if a less informative caption is
used as a search query. This seems to depend on whether there is a function to
compensate for the lack of information in the less informative query. However,
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the retrieval performance of our system improves significantly when we incorpo-
rate keywords into the search query, making the query explicitly informative.

The main contributions of this paper are as follows:

– We introduce a text-to-image retrieval system that utilizes M-LLMs and
retrieval algorithms based on sparse lexical representations, and evaluate its
effectiveness on various benchmark datasets.

– To enhance M-LLM performance in extracting image features, we employ
data augmentation techniques for key expansion and quantitatively evaluate
the improvement in retrieval performance.

2 Related Work

2.1 Evolution of Image Retrieval Research

Image retrieval has been studied extensively in recent decades. This includes
tasks such as finding images similar to a given input image, searching for im-
ages with specific content features like colors, shapes, and textures [56, 64], and
retrieving images based on their semantic meaning or content categories [37].
Researchers have also explored more specialized tasks like conditioned image re-
trieval, where both images and semantic conditions are used as query inputs to
find relevant images [2, 3]. In practice, image retrieval often involves searching
for images based on descriptive texts, such as metadata and hashtags utilized on
social media platforms. This requires matching user queries with relevant images
by analyzing their associated metadata or the images themselves. However, de-
spite its practical significance, text-to-image retrieval remains an understudied
domain within computer vision research. This lack of research may be attributed
to the fact that the accuracy of the image retrieval heavily depends on the quality
and thoroughness of human annotations.

Recent advances in NLP have empowered text-to-image retrieval through the
development of contrastive language-image pre-training techniques [18, 25, 39].
By mapping images and texts into a shared latent space and calculating their
semantic similarities, these techniques enable image retrieval based on textual
descriptions. Moreover, the rise of M-LLMs that can generate textual descrip-
tions for images without the need for human annotations [51,60,62] emphasizes
the significance of exploring interactions between images and descriptive texts
in the form of interpretable lexical data. In this paper, we rethink text-to-image
retrieval by leveraging sparse lexical representations. For the context of text-
to-image retrieval tasks, while previous research has primarily focused on the
evaluations in the caption-to-image retrieval [7, 18, 25, 38, 39, 48], we shift our
attention to keyword-based image retrieval, which is more commonly used in
practical applications but remains understudied. We explore its potential appli-
cations and provide insights for future research directions.
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2.2 Large Language Models for Visual Promptings

In the past few years, LLMs have made remarkable progress, and their pop-
ularity has grown significantly due to their impressive ability to comprehend
context [5, 34,47,53–55]. Recently, there has been a growing development of M-
LLMs, which support visual inputs as well as text-based promptings, providing
comprehensive and flexible applications [4, 22, 28, 29]. GPT-4V is capable of ac-
cepting both text and image prompts, understanding visually depicted scenarios
in images, and addressing complex visual question answering tasks [34, 60, 62].
TagGPT offers a tagging system that extracts tags from multi-modal content
such as images and videos without requiring additional knowledge or human an-
notations, by leveraging the M-LLMs [22]. BLIP-2 and InstructBLIP introduce
Querying Transformer that bridges the modality gap between images and texts,
while keeping pre-trained vision encoders and backbone LLMs frozen [9, 24].
LLaVA proposes a visual instruction tuning technique for large multi-modal
models that integrate vision encoders with LLMs for general-purpose visual
and language understanding by utilizing instruction-following data generated
by GPT-4 [28, 29]. The rise of these M-LLMs presents an opportunity for us to
revisit the understudied keyword-based image retrieval without the need for hu-
man annotations. In this paper, we leverage these M-LLMs to transform visual
information in images into expanded lexical representations, enabling us to har-
ness traditional efficient sparse retrieval methods for image retrieval tasks. Our
approach effectively combines classic techniques with cutting-edge innovations.

2.3 Sparse Retrieval

Recently, there has been growing interest in using dense retrieval methods that
leverage dense vector representations generated by DNNs for image retrieval
tasks [13,50,59,61]. However, sparse vector representations, typically in the form
of lexical retrievers, have also been explored due to their enhanced interpretabil-
ity and analytical capabilities [6,31,33,66]. To address the perceived trade-off be-
tween accuracy and interpretability, LexLIP [31] introduces a lexicon-weighting
paradigm to significantly reduce retrieval latency while maintaining high perfor-
mance with bag-of-words models. Similarly, STAIR [6] maps images and texts
to a sparse token space to construct sparse text and image representations for
improved retrieval accuracy. These studies demonstrate the potential of sparse
retrievers to outperform dense retrievers. Our approach leverages a multi-modal
language model to extract image features into textual data. We then utilize vec-
torization and retrieval algorithms in NLP tasks, such as BM25 [43], TF-IDF [44],
and word2vec [32], for image retrieval tasks. Among these techniques, BM25 is
considered an efficient sparse retrieval algorithm and is frequently used for bench-
mark evaluations in information retrieval tasks [31, 49, 66]. BM25 demonstrates
better out-of-distribution generalization capabilities compared to dense retriev-
ers [52], and outperforms them in retrieving named entities or words that were
not seen during training [46]. Based on such potential capabilities, we employ
the efficient and standard retrieval algorithm, BM25, for sparse lexical vectors
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Fig. 1: Overview of our image retrieval system. Our system utilizes an M-LLM to
describe an image in textual data such as tags and captions. The textual data is
encoded into sparse vectors. When retrieving specific images, query keywords are also
encoded into sparse vectors, enabling the retrieval of relevant images.

directly converted from textual data. Our approach does not rely on dense latent
representations extracted by DNNs, and eliminates the need for specialized vec-
tor space adaptation, enabling the application of key expansion techniques for
enhanced performance. By transforming the image retrieval task into a sparse
lexical retrieval task, we can rethink image retrieval from an NLP perspective.

3 Approach

Fig. 1 provides an overview of our image retrieval system. Our image retrieval
system consists of three processes: (1) feature extraction using an M-LLM, (2)
encoding into sparse vectors, and (3) retrieving images. Our system accepts
text-based queries such as keywords, and returns a set of relevant images from
a database. Each process is described below.

3.1 Feature Extraction Using M-LLM

First, we generate textual data for images to be stored in a database. By utilizing
M-LLMs with visual prompting capabilities [4,22,29,34], it is possible to extract
features from images and represent them in textual data. Among the M-LLMs,
the pre-trained LLaVA model demonstrates high performance across various
benchmark datasets for general-purpose visual and language understanding [28,
29], therefore we utilize this publicly available model in our work. We provide
the M-LLM with an image and a prompt such as “Please generate multiple
captions to describe the features of this image.” or “Please describe
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Original image
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・
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Fig. 2: Data augmentation techniques for key expansion. An original image is seg-
mented into multiple regions as cropped images (left), and each cropped image is
processed by an M-LLM to generate captions that extract the features of each region
(right). By concatenating the generated captions, including those derived from the
original image, we can extract a comprehensive set of features from the whole image.

the characteristics of this image with tags and captions.” Then, we
can obtain generated lexical tags and captions that represent the image features.

For our system, we can also apply image captioning models [20,23,65]. How-
ever, we choose to utilize pre-trained M-LLMs provided in the open-source li-
brary, as they offer generally powerful performance without the need for model
tuning [28, 29]. The remarkable ability of M-LLMs to interactively comprehend
prompts and context can be utilized to iteratively extract information related
to image content by providing them with step-by-step queries. For instance, af-
ter the M-LLM generates captions for an image based on the initial prompt, we
provide it with another prompt: “If there are any additional features of
this image that are not expressed in the generated captions, please
generate additional captions to explain them.” Considering such poten-
tial applications, we present the system using M-LLMs instead of image caption-
ing models in this paper.

Data Augmentation Techniques for Key Expansion. In order to suffi-
ciently extract features and information from various viewpoints within images,
we employ a cropping technique, which is commonly used in image recognition
tasks as a means of data augmentation. As shown in Fig. 2, we divide an original
image into multiple segments as cropped images, such as two vertical segments,
two horizontal segments, four segments, or nine segments. For each cropped im-
age, the M-LLM generates a corresponding caption that describes the feature of
the image. By concatenating all the generated captions, including those derived
from the original image, we can extract a comprehensive set of features from the
whole image. The cropping technique assists the M-LLM in effectively extract-
ing features from images, while expanding the key sets in the database (i.e., key
expansion), leading to improved retrieval performance.

For cropping images, we can also utilize object detection models like YOLO
or spatial transformer networks [17, 40, 41]. However, when using the object de-
tection model, areas where the model fails to detect objects or where no objects
exist (e.g., sky scenery, glass fields, or sea areas) will not be cropped. Conse-
quently, the M-LLM cannot extract information from these areas within the
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images. To avoid the impact of inductive biases in object detection models, in
this paper, we do not use such models, but instead employ fixed pattern crop-
ping, regardless of the location of objects within the images, as shown in Fig. 2.

Analysis with CLIPScore. To evaluate the impact of the cropping technique,
we use a metric called CLIPScore [16]. CLIPScore is used to evaluate the rele-
vance between an image and a textual description by comparing the embeddings
extracted through the models pre-trained by CLIP. If the pre-trained model em-
beds an image data (I) and a textual data (T ) into their respective embeddings
EI and ET , we can calculate CLIPScore based on the cosine similarity between
their embeddings as follows,

CLIPScore(I, T ) = w ×max(cos(EI ,ET ), 0), (1)

cos(EI ,ET ) =
EI ·ET

||EI ||||ET ||
, (2)

where w is a scaling parameter used to adjust the range of score distribution,
and we set w = 2.5 as reported in the original paper [16]. This metric is typically
used for evaluating the quality of image captioning models, by measuring the
relevance between the captions generated by the models and the corresponding
images [16,35,45]. In contrast, we utilize this metric to evaluate the effectiveness
of the cropping technique in eliciting diverse textual descriptions. For example,
if the CLIPScore value between a cropped image and a textual description is
larger than the value between the original image and the textual description, it
indicates that the cropping technique has produced a more suitable image for
eliciting the textual description.

In our evaluation, we use the Microsoft COCO (MS-COCO) dataset [27],
which comprises images depicting a variety of scenarios involving multiple ob-
jects from 80 different categories. Specifically, we employ the 2017 validation
set of MS-COCO, consisting of 5,000 images. We adopt the list of 80 categories
as diverse textual descriptions (e.g., “bicycle” and “refrigerator”), and calculate
CLIPScore based on Eqs. (1) and (2) between each image and textual descrip-
tion. We utilize a model pre-trained by CLIP (ViT-L/14@336px) for vision and
text encoders, as in the experiments described in Sec. 4.1. We average CLIPScore
over all the images and all the textual descriptions as follows,

AveragedCLIPScoreall =
1

NI

NI∑
i=1

AveragedCLIPScoreeach(Ii), (3)

AveragedCLIPScoreeach(Ii) =
1

(NC + 1)NT

NC∑
j=0

NT∑
k=1

CLIPScore(Ii,j , Tk), (4)

where NI is the total number of images in the dataset, while NC represents
the number of cropped images for each image and NT denotes the number of
textual descriptions. Additionally, Tk represents the k-th textual description,
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Fig. 3: The variations in averaged CLIPScore based on Eq. (4) for each of the 5,000
validation images from the MS-COCO dataset. As shown in the left figure, the original
images are cropped by fixed patterns including overlaps. In the upper right graph, the
values are sorted by averaged CLIPScore for each image in descending order. The lower
right table summarizes averaged CLIPScore based on Eq. (3) for all the images in the
dataset, along with the top-50 recall performance (R@50).

and Ii,j refers to the j-th cropped image for the i-th image. Specifically, when
j = 0, it corresponds to the original image before cropping.

As shown in the left figure of Fig. 3, the original images are cropped by fixed
patterns, which include overlapped edges, in order to evaluate the impact of
information loss along the boundaries of the cropped patterns. The upper right
figure in Fig. 3 shows the variations in averaged CLIPScore based on Eq. (4)
for each of the 5,000 validation images from the MS-COCO dataset. As the
number of cropped images increases to 17, averaged CLIPScore based on Eq. (3)
for all the images in the dataset increases, as summarized in the lower right
table. We also evaluate the retrieval performance, which is measured by top-50
recall (R@50), in retrieving the images (the recall is calculated as in Eq. (6)
by evaluating keyword-based image retrieval scenario described in Sec. 4.1). As
the number of cropped images increases to 17, we can observe the improvement
on R@50. On the other hand, when the number of cropped images increases
from 17 to 40 by cropping with overlaps, averaged CLIPScore based on Eq. (3)
does not increase and the recall performance is not improved. At this point, we
consider that the impact of cropping has reached a point of saturation, and the
information loss from the original images has been effectively mitigated. Hence,
we select 17 fixed patterns for cropping in the experiments of Sec. 4.

By employing the cropping technique, images can be divided into multiple
segments, which reduces the number of features that the M-LLM needs to focus
on and describe for a single image. The above results empirically indicate that
the cropping technique enhances the ability of the M-LLM to extract features
from images more precisely, leading to improved retrieval performance.
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3.2 Encoding into Sparse Vectors and Text-to-Image Retrieval

We encode the textual data generated by the M-LLM into lexical representa-
tions with sparse vectors, where we insert non-zero values only at the positions
that correspond to the terms present in the corpus. We employ the BM25 al-
gorithm [43] for effective image retrieval based on the sparse lexical represen-
tations. BM25 is a widely used algorithm in NLP applications that efficiently
retrieves documents by scoring them based on their term frequencies, enabling
the search for relevant documents to a given query. Specifically, this algorithm
assigns higher weights to rare terms within the corpus and lower weights to
common terms. These vectors are then stored in the form of an inverted index,
allowing for quick lookups of documents containing specific terms and signifi-
cantly reducing the search space, thereby accelerating the retrieval process.

When searching for images, we set descriptive keywords as search queries
to focus on specific features or aspects within images. We convert these search
queries into sparse lexical representations, and we can retrieve relevant textual
data and corresponding images from the database based on their sparse lexi-
cal representations by using the BM25 algorithm. The actual settings, such as
parameters, are described in the subsequent section.

4 Experiments

4.1 Experimental setup

Model settings. A LLaVA model is an end-to-end trained large multi-modal
model that connects a vision encoder and an M-LLM for general-purpose visual
and language understanding [28, 29]. Compared to other M-LLMs with visual
prompting capabilities, the LLaVA’s large multi-modal model has demonstrated
superior performance on a variety of benchmark datasets, outperforming models
like BLIP-2 and InstructBLIP [28,29]. In our experiments, we utilize one of the
pre-trained multi-modal models (llava-1.5-13b-hf)1 publicly available from
the Hugging Face’s Transformers library [57]. Based on our analysis in Sec. 3.1,
we divide original images to obtain 17 cropped images as shown in the left fig-
ure of Fig. 3. We provide the pre-trained LLaVA model with the prompt “Please
generate multiple captions to describe the features of this image.”
for each of the original images and the cropped images, in order to generate cap-
tions that represent the features of each image. After the caption generation, we
concatenate all the generated captions.

We use zero-shot vision-language models pre-trained by CLIP (ViT-L/
14@336px)2 and ALIGN (align-base)3 as our baselines, because these mod-
els have demonstrated robust and reliable performance across a wide range of

1 We utilize the pre-trained models available at the following URLs:
https://huggingface.co/llava-hf/llava-1.5-13b-hf

2 https://github.com/openai/CLIP/blob/main/clip/clip.py
3 https://huggingface.co/kakaobrain/align-base

https://huggingface.co/llava-hf/llava-1.5-13b-hf
https://github.com/openai/CLIP/blob/main/clip/clip.py
https://huggingface.co/kakaobrain/align-base
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benchmark datasets [18,39]. Note that the pre-trained LLaVA model utilizes the
vision encoder model included in the same pre-trained CLIP model as its vision
encoder. Given this, we can expect that our chosen M-LLM has similar visual
performance capabilities as one of our baseline models. Neither our method nor
the baseline methods involves fine-tuning the pre-trained models.

Task settings and datasets. As a text-to-image retrieval task, we consider
a keyword-based image retrieval scenario using three benchmark datasets: MS-
COCO [27], PASCAL VOC [11], and NUS-WIDE [8]. Each dataset consists of
images featuring multiple objects and scenes, and each image is annotated with
descriptive labels. In our experiments, we utilize the ground-truth labels assigned
to each image in the respective datasets as keywords for our search queries to
retrieve the corresponding images. For instance, the 2017 validation set of MS-
COCO contains a total of 5,000 images, of which 4,952 images include one or
more objects belonging to 80 categories with 80 different label types. Then, each
of these 80 distinct labels like “bus” serves as a keyword for our search query.
Similarly, we utilize the 2007 test set of PASCAL VOC, which comprises 4,952
images with one or more objects per image belonging to 20 classes. Moreover, we
explore the NUS-WIDE dataset, featuring 260,648 web images with one or more
textual tags per image. Each image is labeled with multiple concepts from a set
of 81 labels. As a subset, we focus on the 195,834 image-text pairs corresponding
to the 21 most common concepts, and we use a total of 2,100 image-text pairs
from this subset for the test set, as previously validated in [19,58].

We also consider a multi-keyword-based image retrieval scenario, where mul-
tiple keywords are combined and used to refine the search criteria like an AND
search. For our experiments, we join the ground-truth labels of each image in
the aforementioned datasets into a search query. For example, if we use an image
file named “val2017/000000454661.jpg” that contains labeled objects such as
“car”, “bus”, and “traffic light” in the MS-COCO dataset, we join the labels
together as “car, bus, traffic light” to form the search query for the image.

Furthermore, we evaluate the performance in a caption-to-image retrieval
setting, which is a basic evaluation setting for text-to-image retrieval tasks. We
utilize the MS-COCO and Flickr30k [36] datasets, and employ the ground-truth
caption sentence for each image as a search query to retrieve the corresponding
image. Specifically, we use a total of 5,000 images in the 2017 validation set of
MS-COCO and a total of 1,000 images in the test set of Flickr30k.

Finally, in order to explore the potential practical applications of our retrieval
system, we consider a scenario for text-to-image retrieval with user feedback. In
this scenario, after an initial retrieval based on a search query, a user iteratively
incorporates keywords into the search query as user feedback to gradually clarify
the vision for the desired image like a multi-turn refined search. As an example,
we combine the caption-to-image retrieval setting with the keyword-based image
retrieval setting. We utilize both ground-truth captions and labels for 4,952
images in the 2017 validation set of MS-COCO. After an initial retrieval based
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on a ground-truth caption for an image, we iteratively incorporate the ground-
truth labels for the image into the search query as keyword-based user feedback.

Retriever settings. In our retrieval system, we leverage the BM25 algorithm
and employ Pyserini [26], which is a Python interface to Lucene’s BM25 imple-
mentation. We set the parameters to their default values of k1 = 0.9 for term
frequency scaling and b = 0.4 for document length normalization. In the baseline,
the vision-language models retrieve images by calculating the distance based on
cosine similarity between the embeddings for query texts and images.

In the keyword-based image retrieval evaluations, we directly utilize ground-
truth labels as textual inputs for the text encoder models. We do not employ
prompt templates like “A photo of a {label}.” commonly used in CLIP [39].
Our preliminary experiments showed that the use of such templates could po-
tentially decrease recall performance, particularly when the labeled object was
not the main focus of the image. Therefore, we do not use such templates and
instead directly use the labels.

Evaluation metrics. To evaluate the retrieval performance, we use precision
and recall metrics. We sweep the number of top-retrieved images (k) by powers
of two from 1 to the total number of images in each dataset. We calculate the
precision (P@k) and recall (R@k) metrics based on the number of true positives
(TP@k) among the top k retrieved images for each query (q) as follows,

P@k =

∑NQ

q=1 TPq@k

NQk
, (5)

R@k =

∑NQ

q=1 TPq@k∑NQ

q=1 Pq

, (6)

where NQ is the total number of queries and Pq is the total number of ground-
truth images for each query.
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Fig. 4: Comparison of precision and recall curves between our retrieval method and
the conventional retrieval methods for the keyword-based image retrieval setting on
the MS-COCO, PASCAL VOC, and NUS-WIDE datasets.



12 K. Nakata et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

Recall

MS-COCO

Recall

P
re

c
is

io
n

Ours (+crop)
Ours
ALIGN
CLIP

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

Recall

PASCAL VOC

Recall

P
re

c
is

io
n

Ours (+crop)
Ours
ALIGN
CLIP

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

Recall

NUS-WIDE

Recall

P
re

c
is

io
n

Ours (+crop)
Ours
ALIGN
CLIP

Fig. 5: Comparison of precision and recall curves between our retrieval method and
the conventional retrieval methods for the multi-keyword-based image retrieval setting
on the MS-COCO, PASCAL VOC, and NUS-WIDE datasets.

Table 1: Comparison of PR-AUC values for the keyword-based image retrieval settings
on the MS-COCO, PASCAL VOC, and NUS-WIDE datasets using our retrieval method
and the conventional retrieval methods. Multi indicates the PR-AUC values in the
multi-keyword-based image retrieval setting.

MS-COCO PASCAL VOC NUS-WIDE
2017 validation set 2007 test set 21 classes test set

Method Multi Multi Multi
CLIP [39] 0.382 0.070 0.587 0.083 0.523 0.029

ALIGN [18] 0.398 0.069 0.622 0.100 0.543 0.036
Ours 0.666 0.112 0.722 0.080 0.535 0.016
+crop 0.682 0.210 0.765 0.123 0.619 0.039

4.2 Experimental results

Keyword-based image retrieval. As shown in Fig. 4, our retrieval method
exhibits higher precision and recall compared to the conventional vision-language
model-based methods on the MS-COCO and PASCAL VOC datasets for the
keyword-based image retrieval setting. By using the cropping technique on the
NUS-WIDE dataset, we can observe an improvement in both precision and recall
performance, outperforming the conventional methods.

Fig. 5 shows the precision and recall curves in the multi-keyword-based im-
age retrieval setting. As shown in Fig. 5, both precision and recall are improved
by using the cropping technique. Specifically, our method outperforms the con-
ventional methods by using the cropping technique on the PASCAL VOC and
NUS-WIDE datasets.

To quantitatively compare the precision and recall performance, we sum-
marize the values of PR-AUC (Area Under the Precision-Recall Curve) on the
MS-COCO, PASCAL VOC, and NUS-WIDE datasets in Table 1. Our retrieval
method outperforms the conventional methods on the MS-COCO dataset, demon-
strating higher PR-AUC values. In addition, the utilization of the cropping tech-
nique on the PASCAL VOC and NUS-WIDE datasets improves the PR-AUC
values, surpassing the performance of conventional methods.
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Table 2: Recall performance comparison between our retrieval method and the conven-
tional retrieval methods in the caption-to-image retrieval setting using the MS-COCO
and Flickr30k datasets.

MS-COCO Flickr30k
5k validation set 1k test set

Method R@1 R@5 R@10 R@1 R@5 R@10
ALIGN [18] 40.2 64.5 74.7 81.4 96.7 98.7
FLAVA† [48] 38.4 67.5 - 65.2 89.4 -
CLIP [39] 33.9 58.5 69.2 73.6 93.4 97.3

UNITER† [7] - - - 68.7 89.2 93.9
ImageBERT† [38] 32.3 59.0 70.2 54.3 79.6 87.5

Ours 22.1 42.5 53.2 42.8 67.4 75.3
+crop 27.3 49.5 59.9 57.3 81.8 88.0
† We refer to the values reported in the papers.

Caption-to-image retrieval. In Table 2, we summarize the recall perfor-
mance for the caption-to-image retrieval setting on the MS-COCO and Flickr30k
datasets. Our method shows promise for improvement using the cropping tech-
nique. However, its performance still lags behind that of conventional meth-
ods. Notably, our retrieval system successfully locates sentences containing ex-
act matches to the query keyword based on a few words, as demonstrated in the
keyword-based image retrieval evaluations. Conversely, our system encounters
difficulties in locating sentences that partially or ambiguously match the query
caption sentence based on a combination of several words. In the subsequent
experiment, we provide a discussion of these results.

Text-to-image retrieval with user feedback. The left graph in Fig. 6
demonstrates an improvement in recall (R@1) as the number of keyword-based
user feedback increases, by iteratively incorporating the ground-truth labels for
each image in the MS-COCO dataset into the search query. As shown in the cen-
ter graph of Fig. 6, the precision at the similar recall is improved by incorporating
all the ground-truth labels into the search query, because images to be retrieved
can be specified based on the additional keywords. As an example, consider a cap-
tion sentence for an image file “val2017/000000003661.jpg”, such as “A bunch
of bananas sitting on top of a wooden table.” Our initial top-1 retrieval
result for this query caption is an image file “val2017/000000571718.jpg.”
This image actually depicts a bunch of bananas sitting on top of a wooden ta-
ble, with a man standing nearby, which is relevant to the search query based
on the caption. In other words, the query caption is not sufficiently informative
to precisely specify the desired image. If we incorporate the keywords “cup”,
“banana”, and “keyboard” into the search query based on the ground-truth la-
bels of the image file “val2017/000000003661 .jpg”, our system can successfully
return the ground-truth image as the top-1 retrieved image. In this case, the file
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Fig. 6: (Left) The variations of recall at 1 (R@1) for the text-to-image retrieval with
user feedback setting on the MS-COCO dataset. The ground-truth labels are iteratively
incorporated into the search query as the keyword-based user feedback after the initial
retrieval based on the caption-to-image retrieval setting. (Center) The variations of
precision and recall curves by incorporating all the ground-truth labels for each image
into the search query. (Right) The summary of the improvement in recall performance
with the keyword-based user feedback.

“val2017/000000571718.jpg” is eliminated from the retrieved candidates since
this image does not contain keyboards.

In another example, a caption sentence for an image file “val2017/00000000
2149.jpg” is “A large white bowl of many green apples.” Our initial top-
1 retrieval result for this query caption is an image file “val2017/000000575970
.jpg”, which depicts a bowl of green apples on the dining table in the living room.
If we incorporate the keywords of “bowl” and “apple” into the search query based
on the ground-truth labels of the image file “val2017/000000002149.jpg”, our
system can successfully return the ground-truth image as the top-1 retrieved
image by prioritizing the keywords in the query, thus specifying the focus points.

Finally, the right table in Fig. 6 summarizes the quantitative improvement on
recall performance. When compared to the conventional methods, our retrieval
method exhibits a significant improvement.

5 Conclusions

In this paper, we introduced an image retrieval system that utilizes an M-LLM
to extract image features into textual data and that employs an efficient sparse
retrieval algorithm commonly used in NLP tasks. We considered the keyword-
based image retrieval scenarios as text-to-image retrieval tasks, where keywords
are utilized for search queries and refining the search criteria. In the keyword-
based image retrieval scenarios, we demonstrated that our approach outperforms
the conventional vision-language model-based methods in terms of precision and
recall on the benchmark datasets. In particular, we introduced a cropping tech-
nique that assists the M-LLM in effectively extracting image features. We ana-
lyzed the impact of the cropping technique by using CLIPScore, and empirically
showed the effectiveness based on the improvement of the retrieval performance.
Finally, we demonstrated that the iterative incorporation of keywords into search
queries like user feedback significantly improves our retrieval performance.
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Appendix

A Informativeness of Queries

When a user searches for an image, the query may not always adequately repre-
sent or reflect the user’s desires or intentions. It could be incomplete or lacking
in the necessary information to specify them. For example, consider a situation
where a user is searching for an image that depicts a Labrador Retriever lying
on a grass field. If the search query is simply “Labrador Retriever,” it lacks
the necessary information to specify the desired images and a large number
of Labrador Retriever images could be potential retrieval candidates. In con-
trast, by combining keywords like “Labrador Retriever,” “lying,” and “grass
field” in the search query, it becomes more informative and helps to specify
and retrieve the desired image. Experimental examples are presented in the ex-
periments of text-to-image retrieval with user feedback in Sec.4.2 of the paper.

B Analysis with CLIPScore

In Sec. 3.1 of the paper, we evaluate the effectiveness of cropping images us-
ing CLIPScore. To calculate CLIPScore, we utilize images from the MS-COCO
dataset and adopt the list of 80 categories of the MS-COCO dataset as diverse
textual descriptions (e.g., “bicycle” and “refrigerator”).

We can also adopt the other textual descriptions, such as a list of 1,000
labels in the ImageNet dataset [10], which are not directly related to the images
in the MS-COCO dataset. We calculate CLIPScore between each image in the
MS-COCO dataset and each text label of the ImageNet dataset. We average the
values based on Eqs. (3) and (4) of the paper, and summarize the variations of
the averaged CLIPScore for each image in Fig. 7. The left and center graphs in
Fig. 7 exhibit similar trends and characteristics. For example, as the number of
cropped images increases to 17, the averaged CLIPScore based on Eq. (3) for
all the images in the dataset also increases. Additionally, when the number of
cropped images increases from 17 to 40 by cropping with overlaps, the averaged
CLIPScore based on Eq. (3) does not increase. This indicates that the impact of
cropping has reached a saturation point. These findings are consistent with those
reported in the paper, which supports the validity of the CLIPScore analysis
using the list of 80 categories from the MS-COCO dataset as diverse textual
descriptions in Sec. 3.1 of the paper.

C Precision and Recall Curves for Each Category

We present the precision and recall curves for each category in the keyword-based
image retrieval setting on the MS-COCO dataset as shown in Fig. 8. As examples,
we exhibit the curves for the categories of bicycle, giraffe, refrigerator, and sink.
The characteristics vary depending on the categories, indicating that the ease of
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AveragedCLIPScoreall

based on Eq. (3)

MS-COCO ImageNet

(Baseline) original images 0.320 0.292

With 

cropping

+4 images 0.345 0.322

+8 images 0.352 0.331

+17 images 0.367 0.348

+ 40 images 0.366 0.348

Fig. 7: The variations in averaged CLIPScore based on Eq. (4) of the paper for each
of the 5,000 validation images from the MS-COCO dataset. We adopt the list of 80
categories of the MS-COCO dataset (left) and the list of 1,000 labels of the ImageNet
dataset (center) as diverse textual descriptions. The left graph is same as in Fig. 3 of
the paper. The right table summarizes averaged CLIPScore based on Eq. (3) of the
paper for all the images in the MS-COCO dataset.

retrieving images differs across categories. Overall, our method achieves higher
precision and recall compared to the conventional methods, and the performance
is improved by using the cropping technique. However, if the precision and recall
are sufficiently high like the category of giraffe, the cropping technique may
not improve the performance and could potentially degrade the precision by
retrieving irrelevant cropped images.

D Examples of Captions Generated by M-LLM

Our system utilizes an M-LLM to generate textual data, such as tags and cap-
tions, that capture the semantic content of images. As an example, captions gen-
erated by an M-LLM and corresponding images are shown in Fig. 9. To generate
the captions, we employ the LLaVA’s pre-trained model (llava-1.5-13b-hf)
and provide the model with an image and a prompt “Please generate multiple
captions to describe the features of this image.”, as described in Sec.
4.1 of the paper. In this case, the words such as “sheep”, “fence”, and “rocks”
frequently appeared in the generated captions. Moreover, Fig. 9 displays the
generated captions for one of the cropped images. By using the cropping tech-
nique, the M-LLM effectively extracts features from the image and reflects them
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Fig. 8: Comparison of precision and recall curves for each category between our re-
trieval method and the conventional retrieval methods in the keyword-based image
retrieval setting: (from left to right) bicycle, giraffe, refrigerator, sink.
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The image features a sheep grazing in a grassy field. The 

sheep is positioned towards the right side of the field, with its 

head down, eating the grass. The field is surrounded by a fence, 

providing a secure area for the sheep to graze.  In addition to the 

sheep, there are several rocks scattered throughout the field. 

Some of these rocks are located near the fence, while others are 

closer to the sheep. The presence of these rocks adds a natural 

element to the scene.

Generated captions

The image features a large building with a red roof, surrounded 

by a fenced-in area. Inside the fenced area, there are several 

sheep grazing on the grass. Some of the sheep are closer to the 

building, while others are scattered around the fenced-in area. 

The scene gives a sense of a rural setting with the sheep

peacefully grazing near the building.

Generated captionsCropped images

Original images

Fig. 9: Examples of captions generated by an M-LLM for an original image (top) and
one of the cropped images (bottom). The repeated representations in the generated
captions are intentionally highlighted in color.

in textual data. For example, the phrase like “building with a red roof” ap-
peared in the generated captions for the cropped image but not in those for the
original image. Furthermore, the M-LLM focuses on several sheep other than the
one present in the center of the original image and incorporates this information
into the generated captions.

E Semantic Interpretability and Analyzability

By viewing textual data generated by M-LLMs rather than encoded vector val-
ues, the semantic interpretability of images for humans can be enhanced. Addi-
tionally, analyzing the textual data enables us to perform statistical analysis on
image features. For example, as shown in Fig. 10, we can create word clouds and
histograms of the top 15 frequently used words based on the captions generated
by the LLaVA’s pre-trained model as described in Sec D. We use the cropping
technique and concatenate all the generated captions for the original image and
cropped images. As shown in Fig. 10, the constituent elements and information
present in images can be visualized and statistically analyzed.

Semantic segmentation techniques produce a pixel-wise segmentation map of
an image, where each pixel is assigned to a specific class or object [1,14,30]. By
counting pixels within segmented areas for each class or object, it also becomes
possible to statistically analyze the constituent elements and information present
in images. In contrast, our approach leverages the representation capabilities of
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Fig. 10: Word cloud examples: the original images (left), word clouds based on the
captions generated by M-LLMs (center), and histograms of the top 15 frequently used
words in each image.

M-LLMs to extract diverse information from images, which provides a more
comprehensive understanding of the image content compared to the traditional
semantic segmentation methods that typically focus solely on predefined classes
or object categories.

F Discussion for Limitations and Potential Negative
Impact

Sec. 3.1 of the paper describes one limitation of our approach, which is its ap-
plicability mainly to images that can be described in language, such as scenic
views containing objects. Our approach utilizes M-LLMs that support visual
prompting to extract features from images and represents them using textual
descriptions. Consequently, our approach might not be well-suited for images
that are difficult to describe in language, such as medical images (e.g., chest
x-rays) or defects in anomaly detection tasks. In such cases, DNNs would need
to be trained directly on the raw pixel values of the images and extract the
image features in a latent space without relying on linguistic descriptions. How-
ever, a text-to-image generation technique, called textual inversion, have been
proposed to capture visual concepts in given images while keeping text-to-image
models frozen [12]. This technique enables us to obtain vectors representing spe-
cific visual concepts in the latent space of the frozen text-to-image model. These
vectors can then serve as queries or keys in image retrieval tasks, even though
the image features themselves cannot be described in language. As part of our
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future work, we plan to further explore the combination of image features that
can and cannot be described using language for image retrieval by leveraging
such techniques.

One potential negative impact of our work is that if our approach is processed
on edge devices, it could significantly affect the limited battery life of these de-
vices due to the substantial computational resources and energy consumption
required by M-LLMs to extract image features. If images stored locally on the
edge devices can be synchronized with cloud backups, the computationally in-
tensive processes can be conducted in the cloud during periods of low usage. For
instance, if a user takes photographs during the daytime and approves them to be
stored in the cloud for backups, the feature extraction process can be conducted
in the cloud while the user is sleeping. Once the feature extraction processes
are complete, the resulting textual data can be downloaded to the user’s device
at a lower energy cost compared to using M-LLMs directly on the edge device,
thereby saving the battery life.
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