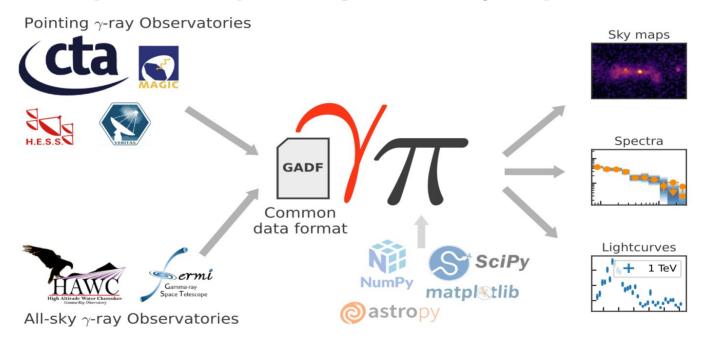


Gammapy Python package for gamma-ray astronomy into the Open Science

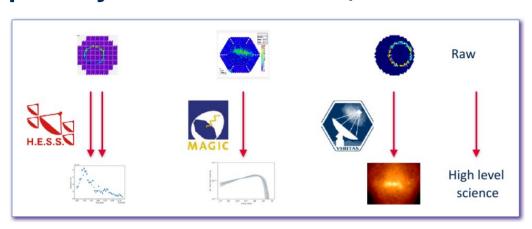

Bruno Khélifi Project manager, for the Gammapy team

RICAP-24, Villa Tuscolana, Frascati September 26th, 2024

Open Science Tool: its concept

Python library to analyse high-level γ -ray data

Designed to analyse several data sets



The landscape 10 years ago

Proprietary data and formats, closed software tools

VHE community worked in a totally competitive and closed mode

 Except few MoUs around scientific projects

Some 'dreamers' worked towards the opening of the VHE astrophysics

- Data format standardization: open initiative
 'Open Gamma-Ray Astro' → GADF format
- Open Science Tools: <u>Gammapy</u>

Deil, C., et al., ASTERICS 2016 (link)

Better results
Interoperability between instruments
Respect of the FAIR principles

Early steps of Gammapy: 2014 – 2017

- Github repository creation in August 19th, 2013 (TevPy)
- First Gammapy release (v0.1) on August 25th, 2014
- Project evolved into a generic library for TeV astronomy and in prevision of the CTAO science analysis tool

« We would like to introduce Gammapy to the community and present our vision of Gammapy as a future community-developed, general purpose analysis toolbox for γ -ray astronomers. [...] Its scope will continuously grow and we hope that many users and developers show interest in open and reproducible γ -ray astronomy with Python. As long-term goal we would like Gammapy to turn into a fully community-developed package. »

Donath, A., Deil, C. et al. ICRC 2015

Towards the LTS v1.0 : 2018 - 2022

- Rapid development cycle with frequent releases (~ 2 month)
 - From v0.7 to 0.20
- Structuration of the library & abstraction of analysis steps
- 19,000 commits from more than 80 contributors
- June 2021: Gammapy selected as official CTAO Science Analysis Tool
 - Used for the CTAO Real Time Analysis
- Version 1.0 released Nov. 10th, 2022

See v1.0 Gammapy paper: Donath et al. (2023)

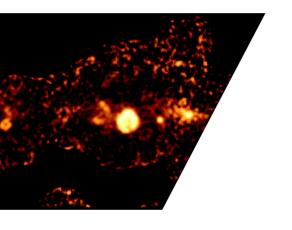
PIG 5 - Gammapy 1.0 roadmap

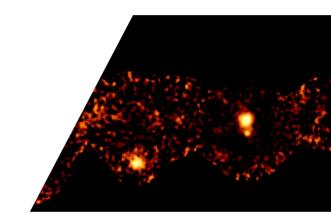
- · Author: Axel Donath, Régis Terrier & Christoph Deil
- Created: Sep 28, 2018
- Accepted: Jan 31, 2019
- · Status: accepted
- Discussion: GH 1841

Abstract

This PIG describes the required short- and medium-term **development work up to the Gammapy 1.0** release. The anticipated time scale for this development effort is 9 - 12 months
and will be concluded by the Gammapy 1.0 release in fall 2019. The question of API design
and sub-module structure for Gammapy 1.0 will be addressed in separate PIGs.

The content of this document was decided based upon user feedback from the first CTA data challenge (DC1), experience from analysing existing datasets as well as definition of use cases (see below). The content will be updated in the coming month and be adjusted to upcoming requirements defined by CTA. Current requirements defined by CTA are described observer access use cases (private link to sides) and in the document written summarizing the SUSS workshop Dec. 2018 (private link to indico).

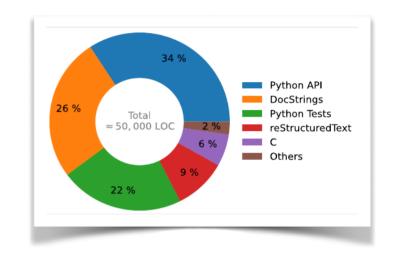

From 2014 to 2024


Talk content:

- 1- Design and features
- 2- Joint multi-instrument analyses
- 3- An open science project

Design and features

The Gammapy library


Lightweight Python software

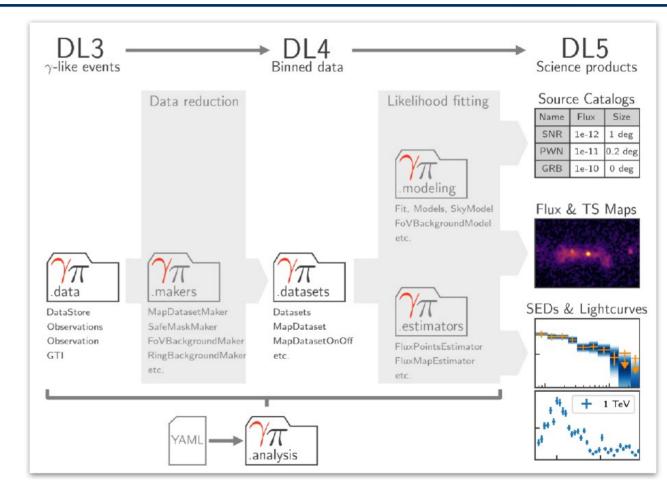
- Astropy-affiliated package
- Fermipy depends on Gammapy

Openly developed on Github

- 8-10 core contributors
- More than 80 contributors from the whole γ -ray astronomy community and beyond

Distributed via PyPi and conda-forge

Data analysis workflow & package structure

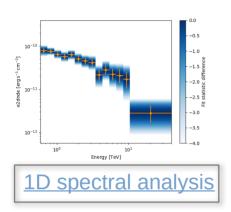

2-step analysis procedure:

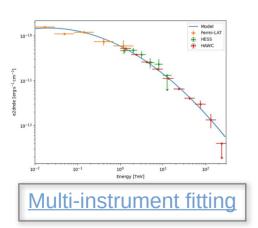
- data aggregation and reduction (DL3 to 4)
- modeling / fitting (DL4 to 5)

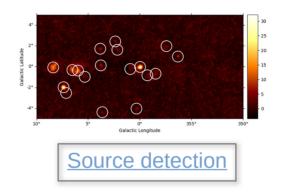
Allow for joint data modeling at DL4 level

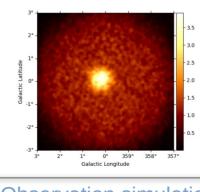
Flexible modeling library:

- physical models (e.g. naima)
- user designed models

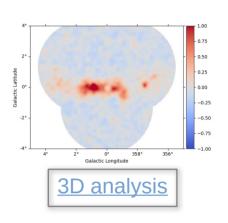


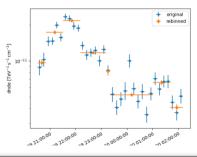


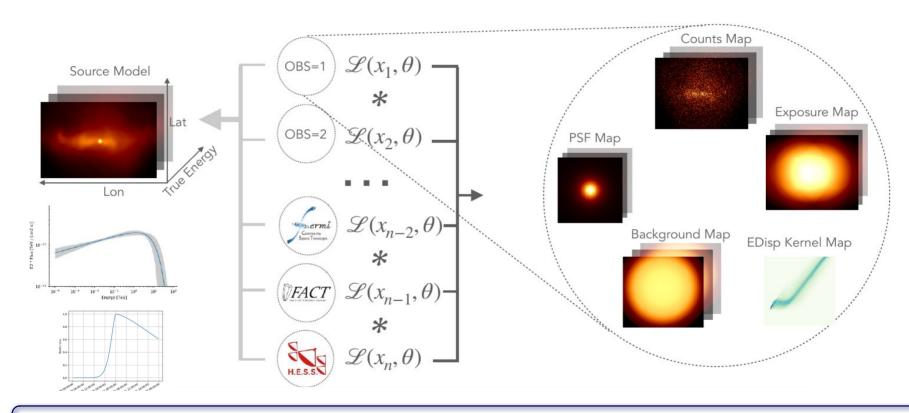


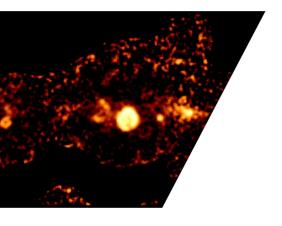


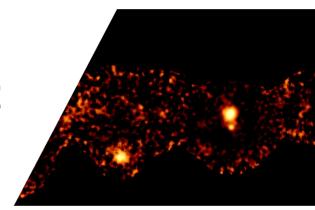
Typical analysis use cases



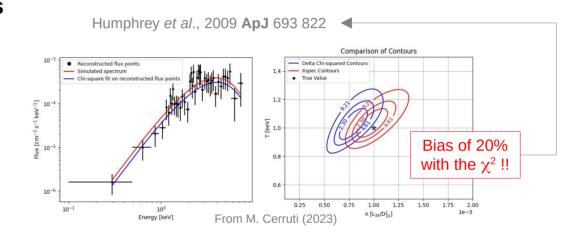



<u>Light-curve extraction</u> and <u>time-variability estimation</u>


Joint likelihood and multi-instrument analysis


Gammapy Dataset structure allows heterogeneous data fitting. See joint fit tutorial

Joint multi-instrument analyses



Challenges for multi-instrument analyses

Rigorous data analysis

- Need correct handling of statistics
 - In contrary to basic χ^2 fit on flux points!

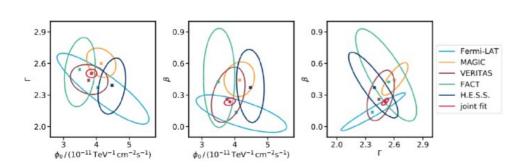
Ex: simulation of a BB seen by Swift with XSPEC

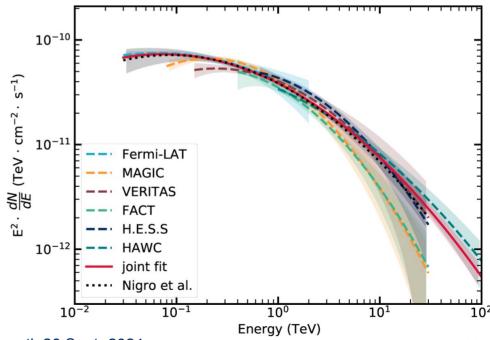
- And inter-instrument systematics
 - E.g. use of priors or parameters or IRFs

Readability of the IRFs

- IRFs from HE → UHE instruments can be factorised in the same manner
- Need of the use of standard formats! (GADF → VODF)

Use of 3D analysis

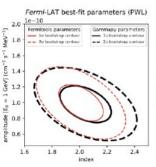


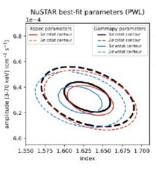

An example: from HE to UHE γ -rays

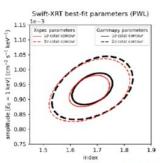
Joint point-like 1D spectral analysis of the Crab nebula

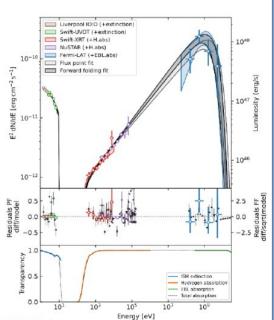
- 6 different instruments over 3.5 decades in energy
 - Simple log-parabola & physical inverse Compton model
 - Modelling of some systematic uncertainties
- Fully reproducible analysis

Nigro et al. 2019 + HAWC: Albert et al. 2022




Other example: from optical to GeV



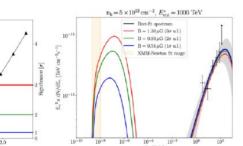

Multi-instrument analysis over 10 decades

- Joint forward fitting fit from eV to 10¹⁰ eV with Gammapy: Liverpool OT, Swift-UVOT, Swift-XRT, NUSTAR, Fermi-LAT
- Flux points lose some stat. information (e.g UL)
- Full forward fit provides more accurate results
- Gammapy facilitates the distribution and reproducibility of the results

OP 313 campaign

From R. Terrier, Gamma2024

An other one: from X-rays to VHE γ -rays

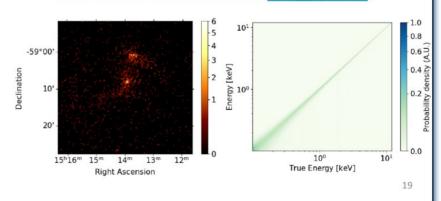

Multi-instrument analysis examples

Joint X-ray and γ-ray fits

First approach:

Read OGIP spectra (1D DL4)
 produced by X-ray telescopes and fit

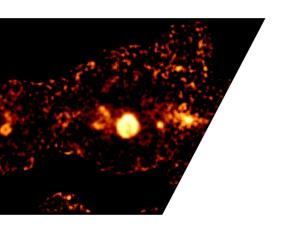
gammapyXray package

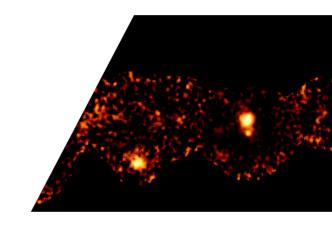

Giunti et al (2022)

DOI 10.5281/zenodo.7092736

Second approach:

 Read X-ray events, IRFs and create 3D DL4 dataset


See e-ROSITA converter in K. Egg poster


From R. Terrier, Gamma2024

An Open Science project

Open research software

Recognition and valorization

- Each release is a real publication
 - According to Open Science recommendations on the science evaluation
 - DOI and SWHID
- Transparent Gammapy Authorship Policy

Long-term archive

 On the universal archive Software Heritage (sustained by UNESCO)

zenodo

Open science activities

- VHE standards : ← creation of the "High Energy IG" [IVOA, Malta, Nov'24]
- VHE data format : GADF → VODF
- Support of any open project that can be affiliated to Gammapy

Dissemination and outreach

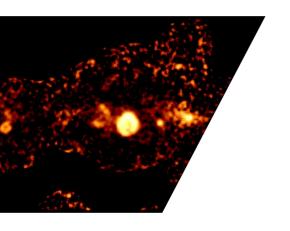
Presentations, hands-on sessions

Material available here and here

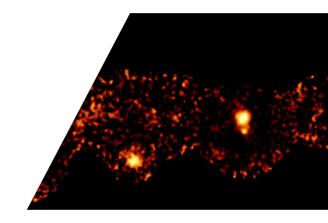
Schools

- ORP school on Multi-messenger Astrophysics, Durham University, Sept 2-6
- CTAO school, La Palma June 22 29
- MPIK-CDY school on the future of γ-ray astronomy, MPI-K HD, June 25-July 3
- IFSC school, São Marcos Feb./March

Advertisement: Cherenkov Astronomy Data School (CADS)


beginner and advanced hands-on sessions

Observatoire de Paris, October 14-18 2024, more on https://indico.obspm.fr/event/2480/


Within the collaborations

Dedicated support and training

Conclusions

Towards the LTS v2.0 and beyond

Towards ML & MM data analysis

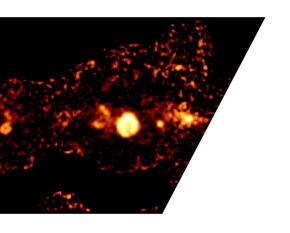
- UHE (HAWC → SWGO)
- X-ray handling improvement
- Neutrino processing
- Unbinned likelihood analysis

Better respect of s/w standards

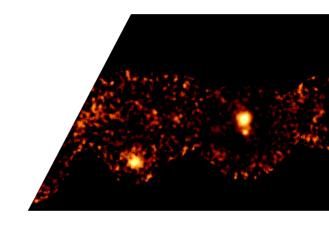
- FAIR4RS principles (towards reproducibility)
- Some IVOA standards (e.g. Provenance)

Improved performance

- Computing time (optimisation, JAX?)
- Memory (caching, sparse array, etc)


Get involved in the adventure

2 post-doc positions be announced soon



Back-up slides

Project Organization

Projects managers

non-technical executive lead

Lead developers

technical executive leads

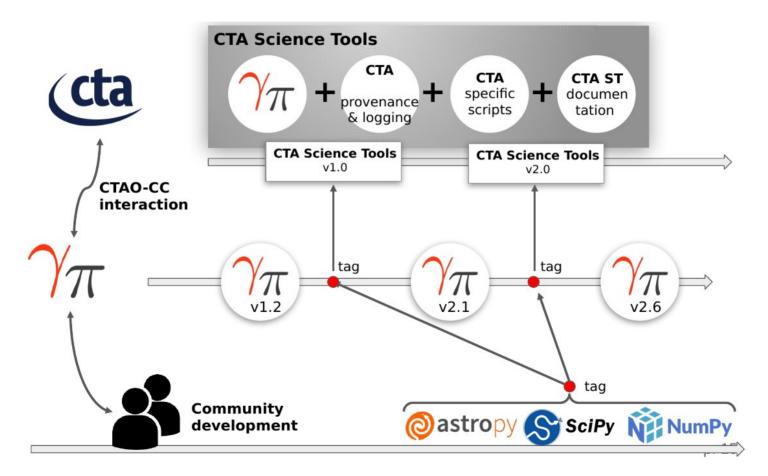
Sub-packages maintainers

core developer devoted to the maintenance of some sub-packages

Contributors

>80 individual contributors from various collaborations and beyond

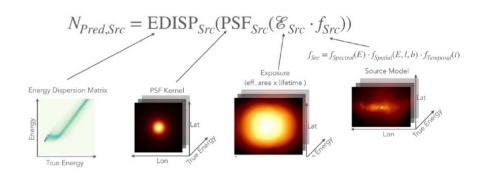
See https://gammapy.org/team.html


Coordination Committee « Promotes, coordinates and steers Gammapy developments » UNIVERSIDAD COMPLUTENSE MADRID INAF

Gammapy and CTAO SAT

Towards the LTS v2.0: features selection

- <u>Parameter prior</u> can now be defined on parameters and the associated log-prior is added to the total statistics during fitting
- Added timing studies utility functions for light curves, see <u>tutorial</u>
- Preliminary support for asymmetric IRFs. See tutorial
- Energy dependent ON-region size for 1D spectral analysis
- And many more...
- More to come in v1.3 (in October!) and beyond
 - Improved support for event types and joint analyses
 - Multi-parameters priors and spectral unfolding
 - Lightcurve simulation and PSD study tools
 - ...



Poisson Log-Likelihood

Common algorithms for the libraries: Poisson Log-Likelihood

"Cash statistics": summed over all "bins"
$$\mathcal{C} = 2\sum_{i} N_{Pred}^{i} - N_{Obs}^{i} \cdot \log N_{Pred}^{i}$$
 i: spectral channels or 3D voxels
$$N_{Pred} = N_{Bkg} + \sum_{Src} N_{Pred,Src}$$

- Bins in the spectral, spatial, temporal domain
- → Need of a "global" background model template with "correction parameters"

→ Need of the "signal" IRFs and source models

Most of the time,

Identical factorization of the IRFs
for X-rays → UHE & neutrino exp.

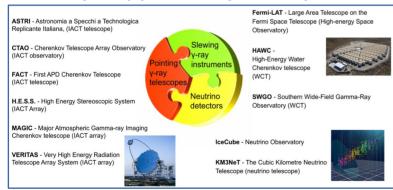
FAIR4RS principles

As with the FAIR Guiding Principles, the <u>FAIR4RS Principles</u> (2022) are intended to be aspirational. The application of the FAIR4RS Principles is the responsibility of the owners (who are often the creators) of the software, not the users.

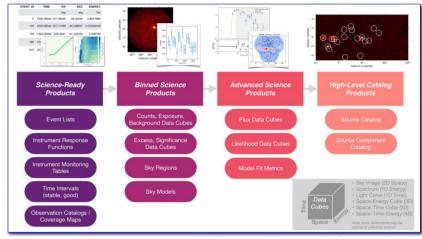
- Software, and its associated metadata, is easy for both humans and machines to find
- Software, and its metadata, is retrievable via standardized protocols
- Software interoperates with other software by exchanging data and/or metadata, and/or through interaction via application programming interfaces (APIs), described through standards.
- Software is both usable (can be executed) and reusable (can be understood, modified, built upon, or incorporated into other software)

VHE data format: VODF

Open Initiative 'Very-high-energy Open Data Format' (link)


Aims to format VHE data (gamma and

neutrino)



Officially supported by 11 experiments

Structured with a project organization

Coordination Committee, Conveners: R. Zanin, B. Khélifi Lead Editors: K. Kosack, L. Olivera-Nieto, J. Schnabel

Khélifi, B., et al., Proc. of 38th ICRC (2023)

Getting help / giving feedback - And get involved!!

- Where/How to interact with dev team and experienced users, provide feedback, get help:
 - gammapy.slack
 - In particular: #help channel
 - GitHub discussions
 - · help category
 - GitHub issues to report bugs or feature requests

- Development guide
- The dev calls: each Friday at 14h CEST!
- The <u>hands-on sessions and schools</u>, the <u>recipes</u>
- Etc

Getting the software

Quickstart installation with conda (ex: LTS)

```
curl -0 https://gammapy.org/download/install/gammapy-1.0.2-environment.yml conda env create -f gammapy-1.0.2-environment.yml conda activate gammapy-1.0.2
```

Installation with pip

pip install gammapy

install all dependencies

Download tutorials & associated data

gammapy download notebooks
gammapy download datasets
export GAMMAPY_DATA=\$PWD/gammapy-datasets

See:

