
Online AuctionOnline Auction
SystemSystem

 Your Ultimate Online Auction Destination

Contributors:Contributors:

NAME: MANAS C BAVASKAR
REG. NO: 221080004
CLASS: S.Y. B.Tech. I.T. Batch A
MOBILE: +91 87796 21594
EMAIL: mcbavaskar_b22@it.vjti.ac.in

NAME: AARYA A BODAS
REG. NO: 221080008
CLASS: S.Y. B.Tech. I.T. Batch A
MOBILE: +91 98206 73543
EMAIL: aabodas_b22@it.vjti.ac.in

ProjectProject
vision andvision and
missionmission
To create a dynamic and user-friendly online
auction platform that revolutionizes the buying
and selling experience by providing a seamless
and secure environment for users to engage in
bidding activities remotely.

01.

02.

03.

Develop a comprehensive database
schema tailored to efficiently manage user
profiles, item listings, bidding activities,
auction events, and transaction records,
ensuring seamless data integration and
interaction throughout the auction process

Implement real-time bidding functionality
to enable users to track the latest bidding
activity and ensure transparency and
competitiveness in the auction process.

Prioritize scalability, security, and user
experience in the design and
implementation of the online auction
platform, aiming to accommodate a
growing user base while safeguarding user
data and providing an intuitive and
engaging interface.

IdeationIdeation
processprocess

01 02
Problem Definition and

Data Modelling:

Clearly define the problem

statement and model the

data using Entity-

Relationship (ER)

techniques.

Database Design, Data

Dictionary, and Query

Language:

Design the database

schema, create a data

dictionary, and generate

Data Definition

Language (DDL)

commands.

03
Triggers and Procedure:

Implement triggers and

procedures to enforce

data integrity and

streamline complex

operations.

04
Database Connectivity,

GUI & Reports:

Develop a user-friendly

frontend interface and

generate reports for

enhanced user

experience and

analytical insights.

CreationCreation
processprocess
In creating our online auction platform, we've opted for a
straightforward approach, utilizing React for the frontend and
Node.js for the backend, ensuring a user-friendly experience. Our
choice of MariaDB as the database solution has allowed us to
effectively store and manage user, item, bid, auction, and
transaction data. The core of our database design revolves around
key tables such as Users, Items, Bids, Auctions, and Transactions,
meticulously crafted to ensure seamless interaction and data
integration. Real-time bidding features have been integrated to
keep users informed of the latest bids, fostering engagement and
competitiveness. Through our platform, users can conveniently
buy and sell goods remotely, marking a significant shift in the
online auction experience towards simplicity and accessibility.

ER MODEL

Data ModelData Model

Database DesignDatabase Design
CREATE TABLE Buyers (

Buyer_ID INT PRIMARY KEY,
Username VARCHAR(50) NOT NULL,
Password VARCHAR(255) NOT NULL,

Email VARCHAR(100) NOT NULL,
Address VARCHAR(255) NOT NULL,

Account_Balance DECIMAL(10, 2) DEFAULT 0
);

CREATE TABLE Sellers (
Seller_ID INT PRIMARY KEY,

Username VARCHAR(50) NOT NULL,
Password VARCHAR(255) NOT NULL,

Email VARCHAR(100) NOT NULL,
Address VARCHAR(255) NOT NULL,

Account_Balance DECIMAL(10, 2) DEFAULT 0
);

CREATE TABLE Items (
Item_ID INT PRIMARY KEY,
Seller_ID INT NOT NULL,

Item_Name VARCHAR(255) NOT NULL,
Description TEXT,

Starting_Price DECIMAL(10, 2) NOT NULL,
Auction_End_Time DATETIME NOT NULL,

Category VARCHAR(50) NOT NULL,
Last_Bidder VARCHAR(255) DEFAULT NULL,

Last_Bid DECIMAL(10, 2) DEFAULT NULL,
FOREIGN KEY (Seller_ID) REFERENCES Sellers(Seller_ID)

);

CREATE TABLE Bids (
Bid_ID INT PRIMARY KEY,
Bidder_ID INT NOT NULL,
Item_ID INT NOT NULL,

Bid_Amount DECIMAL(10, 2) NOT NULL,
Bid_Time DATETIME NOT NULL,

Bid_Status VARCHAR(20) NOT NULL,
Bid_Increment DECIMAL(10, 2) DEFAULT 0,

FOREIGN KEY (Bidder_ID) REFERENCES Buyers(Buyer_ID),
FOREIGN KEY (Item_ID) REFERENCES Items(Item_ID)

);

CREATE TABLE Auctions (
Auction_ID INT PRIMARY KEY,

Item_ID INT NOT NULL,
Auction_Start_Time DATETIME NOT NULL,
Auction_End_Time DATETIME NOT NULL,
Auction_Status VARCHAR(20) NOT NULL,
Reserve_Price DECIMAL(10, 2) DEFAULT 0,

FOREIGN KEY (Item_ID) REFERENCES Items(Item_ID)
);

CREATE TABLE Transactions (
Transaction_ID INT PRIMARY KEY,

Buyer_ID INT NOT NULL,
Seller_ID INT NOT NULL,
Item_ID INT NOT NULL,

Transaction_Amount DECIMAL(10, 2) NOT NULL,
Transaction_Time DATETIME NOT NULL,

Payment_Method VARCHAR(50) NOT NULL,
Transaction_Status VARCHAR(20) NOT NULL,

FOREIGN KEY (Buyer_ID) REFERENCES Buyers(Buyer_ID),
FOREIGN KEY (Seller_ID) REFERENCES Sellers(Seller_ID),

FOREIGN KEY (Item_ID) REFERENCES Items(Item_ID)
);

NormalizationNormalization
The data has been normalized up to the third normal form (3NF) to ensure data integrity and reduce redundancy. In the initial
stage, the Buyers and Sellers tables were created separately to store information specific to each entity, such as their unique
IDs, usernames, passwords, emails, addresses, and account balances. This separation eliminates the need to duplicate buyer

and seller information in other tables, minimizing data redundancy.

The Items table is designed to store information about each item listed for auction, including details such as the item's ID, seller
ID, name, description, starting price, auction end time, category, last bidder, and last bid. The seller ID is included as a foreign

key to establish a relationship with the Sellers table, ensuring referential integrity.

The Bids table maintains records of all bids made on items, storing information such as the bid ID, bidder ID, item ID, bid amount,
bid time, bid status, and bid increment. Foreign key constraints are applied to the bidder ID and item ID columns, referencing

the Buyers and Items tables, respectively, to maintain consistency and enforce data integrity.

The Auctions table tracks information related to auction events, including the auction ID, item ID, auction start time, auction end
time, auction status, and reserve price. The item ID is linked as a foreign key to the Items table, establishing a connection

between auctions and their corresponding items.

Finally, the Transactions table records completed transactions, capturing details such as the transaction ID, buyer ID, seller ID,
item ID, transaction amount, transaction time, payment method, and transaction status. Foreign key references to the Buyers,

Sellers, and Items tables ensure that transaction records are associated with the correct buyers, sellers, and items, respectively,
maintaining data consistency across the database.

Data QueriesData Queries

Data QueriesData Queries

Data QueriesData Queries

TriggersTriggers
1. trg_unique_username: Before inserting into the Buyers table, this trigger checks if the username

already exists to maintain uniqueness, preventing duplicate entries.

2. trg_unique_username_seller: Similarly, before inserting into the Sellers table, this trigger ensures that
the username is unique, maintaining data integrity.

3. set_last_bid_default: This trigger sets the Last_Bid column in the Items table to the Starting_Price if it

is NULL, ensuring a default value is present.

4. trg_update_last_bid: After inserting a bid into the Bids table, this trigger updates the Last_Bidder and
Last_Bid columns in the Items table with the latest bid information.

5. trg_update_buyer_balance: Upon inserting a transaction into the Transactions table, this trigger

updates the buyer's account balance by subtracting the transaction amount, ensuring accurate balance
tracking.

TriggersTriggers
6. trg_update_seller_balance: Similarly, after inserting a transaction, this trigger updates the seller's

account balance by adding the transaction amount, maintaining balance accuracy.

7. after_auction_update_set_winning_bid_trigger: This trigger sets the winning bid for an item after the
auction ends, updating the Bids table with the highest bid and marking it as 'Winning'.

8. end_auction_insert_transactions_trigger: Before updating the auction status to 'Closed', this trigger

inserts a transaction into the Transactions table for the winning bid, updating buyer balances
accordingly.

9. update_auction_status: Before inserting into the Auctions table, this trigger automatically sets the

auction status to 'Closed' if the end time has passed.

10. create_bid_entry_after_update: After updating an item in the Items table, this trigger creates a new
bid entry in the Bids table, reflecting any changes in the last bid amount and bidder.

ProceduresProcedures
1. CalculateAverageTransaction: Calculates the average transaction amount for a given seller ID and

returns the result.

2. CountBidsForItem: Counts the number of bids for a specific item ID and returns the count.

3. FindMaxBidAmountForItem: Finds the maximum bid amount for a given item ID and returns the result.

4. CalculateTotalSalesAmount: Calculates the total sales amount for a specified seller ID and returns the
result.

5. CalculateAverageAuctionDuration: Calculates the average duration of auctions for a given category

and returns the result.

6. CountItemsSoldByBuyer: Counts the number of items sold by a specified buyer ID and returns the
count.

Login PageLogin Page

 View Products PageView Products Page

Bid on Products PageBid on Products Page

User Profile PageUser Profile Page

Seller DashboardSeller Dashboard

Products Listed by SellerProducts Listed by Seller

List New ProductList New Product

Admin DashboardAdmin Dashboard

Auctions HistoryAuctions History

Transaction HistoryTransaction History

Bids PlacedBids Placed

Auction reportAuction report

Item reportItem report

Bids reportBids report

Transactions reportTransactions report

Thank youThank you
very much!very much!

