
PROJECT REPORT

ONLINE AUCTION SYSTEM

CONTRIBUTORS:

NAME: MANAS C BAVASKAR

REG. NO: 221080004

CLASS: S.Y. B.Tech. I.T.

MOBILE: +91 87796 21594

EMAIL: mcbavaskar_b22@it.vjti.ac.in

NAME: AARYA A BODAS

REG. NO: 221080008

CLASS: S.Y. B.Tech. I.T.

MOBILE: +91 98206 73543

EMAIL: aabodas_b22@it.vjti.ac.in

mailto:mcbavaskar_b22@it.vjti.ac.in
mailto:aabodas_b22@it.vjti.ac.in

PROBLEM DEFINITIONS AND DATA MODELLING

Problem Statement:

Online auction systems have revolutionized the way people buy and sell goods, providing a

convenient platform for users to engage in bidding activities remotely. Building a successful

online auction platform entails careful consideration of the underlying database structure to

facilitate efficient data management, scalability, and security. Our project delves into the design

and implementation of a comprehensive database schema for an online auction system, with a

focus on managing users, items, bids, auctions, and transactions effectively.

At the heart of the database structure lies the Users table, serving as the central repository for

user information. The Users table establishes crucial relationships with other database entities,

including Items, Bids, and Transactions, facilitating seamless data integration and user

interaction throughout the auction process.

The Items table stores comprehensive information about items available for auction, enabling

users to list their products and services. Real-time bidding functionality will be implemented

to track the current highest bid for each item, ensuring users have access to the latest bidding

activity.

When users place bids on items, the Bids table records and tracks bidding activity in real-time.

The Bids table establishes relationships with the Users and Items tables, facilitating seamless

data retrieval and bid management throughout the auction process.

The Auctions table manages the auction process for items, providing essential details about

each auction event. The Auctions table is linked to the Items table, ensuring synchronization

between item listings and auction events, with bid updates and auction status changes reflected

in real-time.

Completed transactions resulting from winning bids are recorded in the Transactions table. The

Transactions table establishes relationships with the Users and Items tables, facilitating

seamless integration of transaction data with user and item profiles.

ER Diagram:

FIGURE 1.1

Revised Problem Statement:

This project delves into the design and implementation of a comprehensive database schema

for an online auction system, with a focus on managing users, items, bids, auctions, and

transactions effectively.

At the heart of the database structure lies the Users table, serving as the central repository for

user information. Each user is assigned a unique User_ID, and essential details such as

Username, Password, Email, and Address are recorded. Additional fields for preferred

payment methods and transaction history enhance user profiles. The Users table establishes

crucial relationships with other database entities, including Items, Bids, and Transactions,

facilitating seamless data integration and user interaction throughout the auction process.

The Items table stores comprehensive information about items available for auction, enabling

users to list their products and services. Each item is assigned a unique Item_ID, and

attributes such as Seller_ID, Item_Name, Description, Starting_Price, and

Auction_End_Time are recorded. Additional fields for item condition, category, and images

enrich item listings, making them more attractive to potential buyers. Real-time bidding

functionality will be implemented to track the current highest bid for each item, ensuring

users have access to the latest bidding activity.

When users place bids on items, the Bids table records and tracks bidding activity in real-

time. Each bid is assigned a unique Bid_ID, and details such as Bidder_ID, Item_ID,

Bid_Amount, and Bid_Time are captured. Supplementary fields for bid status and bid

increment provide additional insights into bid progress and auction dynamics. The Bids table

establishes relationships with the Users and Items tables, facilitating seamless data retrieval

and bid management throughout the auction process.

The Auctions table manages the auction process for items, providing essential details about

each auction event. Attributes such as Auction_ID, Item_ID, Auction_Start_Time, and

Auction_End_Time are recorded to track auction timelines and status. Additional fields for

auction status and reserve price enhance auction management and decision-making. The

Auctions table is linked to the Items table, ensuring synchronization between item listings

and auction events, with bid updates and auction status changes reflected in real-time.

Completed transactions resulting from winning bids are recorded in the Transactions table.

Each transaction is assigned a unique Transaction_ID, and details such as Buyer_ID,

Seller_ID, Item_ID, Transaction_Amount, and Transaction_Time are captured. Additional

fields for payment method and transaction status streamline transaction processing and

management. The Transactions table establishes relationships with the Users and Items

tables, facilitating seamless integration of transaction data with user and item profiles.

The project will be implemented using the MERN stack, with the only modification being

that MariaDB will be used as an SQL database instead of MongoDB, which is a non-SQL

database. The buyer will be able to view items listed on various auctions. The seller will be

able to view his/her listed products and will also be able to list more products. The admin will

be able to view the history of auctions, transactions, and bids placed on the web app. Data

Visualization and Analysis will also be done using Power BI, which will be connected to the

MariaDB server, facilitating real-time updates to it.

Revised ER Diagram:

FIGURE 1.2

DATABASE DESIGN, DATA DICTIONARY AND

QUERY LANGUAGE

Schema Design:

FIGURE 2.0

Data Dictionary:

Fig 2.1: Data Dictionary

Fig 2.2: Unique Keys

Fig 2.3: Foreign Keys

DDL for the Data Dictionary:

CREATE TABLE Buyers (

 Buyer_ID INT PRIMARY KEY,

 Username VARCHAR(50) NOT NULL,

 Password VARCHAR(255) NOT NULL,

 Email VARCHAR(100) NOT NULL,

 Address VARCHAR(255) NOT NULL,

 Account_Balance DECIMAL(10, 2) DEFAULT 0

);

CREATE TABLE Sellers (

 Seller_ID INT PRIMARY KEY,

 Username VARCHAR(50) NOT NULL,

 Password VARCHAR(255) NOT NULL,

 Email VARCHAR(100) NOT NULL,

 Address VARCHAR(255) NOT NULL,

 Account_Balance DECIMAL(10, 2) DEFAULT 0

);

CREATE TABLE Items (

 Item_ID INT PRIMARY KEY,

 Seller_ID INT NOT NULL,

 Item_Name VARCHAR(255) NOT NULL,

 Description TEXT,

 Starting_Price DECIMAL(10, 2) NOT NULL,

 Auction_End_Time DATETIME NOT NULL,

 Category VARCHAR(50) NOT NULL,

 Last_Bidder VARCHAR(255) DEFAULT NULL,

 Last_Bid DECIMAL(10, 2) DEFAULT NULL,

 FOREIGN KEY (Seller_ID) REFERENCES Sellers(Seller_ID)

);

CREATE TABLE Bids (

 Bid_ID INT PRIMARY KEY,

 Bidder_ID INT NOT NULL,

 Item_ID INT NOT NULL,

 Bid_Amount DECIMAL(10, 2) NOT NULL,

 Bid_Time DATETIME NOT NULL,

 Bid_Status VARCHAR(20) NOT NULL,

 Bid_Increment DECIMAL(10, 2) DEFAULT 0,

 FOREIGN KEY (Bidder_ID) REFERENCES Buyers(Buyer_ID),

 FOREIGN KEY (Item_ID) REFERENCES Items(Item_ID)

);

CREATE TABLE Auctions (

 Auction_ID INT PRIMARY KEY,

 Item_ID INT NOT NULL,

 Auction_Start_Time DATETIME NOT NULL,

 Auction_End_Time DATETIME NOT NULL,

 Auction_Status VARCHAR(20) NOT NULL,

 Reserve_Price DECIMAL(10, 2) DEFAULT 0,

 FOREIGN KEY (Item_ID) REFERENCES Items(Item_ID)

);

CREATE TABLE Transactions (

 Transaction_ID INT PRIMARY KEY,

 Buyer_ID INT NOT NULL,

 Seller_ID INT NOT NULL,

 Item_ID INT NOT NULL,

 Transaction_Amount DECIMAL(10, 2) NOT NULL,

 Transaction_Time DATETIME NOT NULL,

 Payment_Method VARCHAR(50) NOT NULL,

 Transaction_Status VARCHAR(20) NOT NULL,

 FOREIGN KEY (Buyer_ID) REFERENCES Buyers(Buyer_ID),

 FOREIGN KEY (Seller_ID) REFERENCES Sellers(Seller_ID),

 FOREIGN KEY (Item_ID) REFERENCES Items(Item_ID)

);

Queries that can be asked to the data tables and their solution:

1. How many buyers are there in the database?

2. How many sellers are there in the database?

3. What is the total number of items listed for auction?

4. How many bids have been placed so far?

5. What is the average account balance of all buyers?

6. What is the average account balance of all sellers?

7. How many auctions are currently active?

8. How many items have a starting price greater than $500?

9. What is the highest bid amount placed on any item?

;

10. Which item has received the highest bid amount?

11. How many items belong to the 'Electronics' category?

12. What is the total amount of all bids placed?

13. Which seller has the highest account balance?

14. Which buyer has the highest account balance?

15. How many transactions have been completed successfully?

16. How many items have a bid status of 'Rejected'?

17. What is the total number of unique categories among all items?

18. What is the average bid amount placed on items?

19. How many bids have been placed in the last week?

20. How many transactions have been made using credit cards?

21. What is the average starting price of items?

22. How many items have auction end times within the next 24 hours?

23. How many buyers have an account balance greater than $1000?

24. How many sellers have an account balance less than $500?

25. What is the total amount of all successful transactions?

26. How many items have a bid status of 'Accepted'?

27. What is the average transaction amount for payments made through UPI?

28. What is the average number of bids per item?

29. How many items have a description longer than 100 characters?

30. What is the average number of days an auction lasts?

Insertion of Data Into Tables:

SQL-DML to Maniupulate Data for your ER Model

1. Buyers Table

2. Sellers Table

3. Items Table

4. Bids Table

5. Auctions Table

6. Transactions Table

Complex SQL queries utilizing aggregate functions like AVG, GROUP BY,

and sorting to manipulate data for the ER Data Model:

SQL-DML should explore Complex queries, Aggregate functions like Avg,

group, sort, etc to manipulate data for your ER Data Model

1. Calculate the average bid amount for each item:

SELECT Item_ID, AVG(Bid_Amount) AS Avg_Bid_Amount

FROM Bids

GROUP BY Item_ID;

2. List the total account balance for buyers and sellers:

SELECT 'Buyer' AS User_Type, SUM(Account_Balance) AS

Total_Buyer_Balance

FROM Buyers

UNION

SELECT 'Seller' AS User_Type, SUM(Account_Balance) AS

Total_Seller_Balance

FROM Sellers;

3. Find the highest bid amount for each item:

SELECT Item_ID, MAX(Bid_Amount) AS Highest_Bid_Amount

FROM Bids

GROUP BY Item_ID;

4. List items with their respective number of bids, sorted by the number of bids

in descending order:

SELECT i.Item_ID, i.Item_Name, COUNT(b.Bid_ID) AS Num_Bids

FROM Items i

LEFT JOIN Bids b ON i.Item_ID = b.Item_ID

GROUP BY i.Item_ID, i.Item_Name

ORDER BY Num_Bids DESC;

5. Calculate the total transaction amount for each seller:

SELECT t.Seller_ID, s.Username AS Seller_Username,

SUM(t.Transaction_Amount) AS Total_Transaction_Amount

FROM Transactions t

JOIN Sellers s ON t.Seller_ID = s.Seller_ID

GROUP BY t.Seller_ID, s.Username;

6. Find the average starting price for items in each category:

SELECT Category, AVG(Starting_Price) AS Avg_Starting_Price

FROM Items

GROUP BY Category;

7. List the top 5 buyers with the highest account balances:

SELECT Username, Account_Balance

FROM Buyers

ORDER BY Account_Balance DESC

LIMIT 5;

8. Calculate the total number of bids made by each buyer:

SELECT Bidder_ID, COUNT(*) AS Total_Bids

FROM Bids

GROUP BY Bidder_ID;

9. Find the average bid increment for each item:

SELECT Item_ID, AVG(Bid_Increment) AS Avg_Bid_Increment

FROM Bids

GROUP BY Item_ID;

10. List sellers who have not made any transactions yet:

SELECT s.Seller_ID, s.Username

FROM Sellers s

LEFT JOIN Transactions t ON s.Seller_ID = t.Seller_ID

WHERE t.Seller_ID IS NULL;

SQL-DML should explore Nested queries, Join Queries, along with the

complex queries, Aggregate functions etc to manipulate data for the ER

Data Model

1. Nested Query: Get all items listed by sellers with a specific address

SELECT *

FROM Items

WHERE Seller_ID IN (

 SELECT Seller_ID

 FROM Sellers

 WHERE Address = '101 Maple Avenue, City, Tamil Nadu, India'

);

2. Join Query: Get the details of all bids along with bidder information

SELECT B.*, Bu.Username AS Bidder_Username, Bu.Email AS Bidder_Email

FROM Bids B

INNER JOIN Buyers Bu ON B.Bidder_ID = Bu.Buyer_ID;

3. Complex Query: Get the total transaction amount for each seller

SELECT

 S.Seller_ID,

 S.Username AS Seller_Username,

 SUM(T.Transaction_Amount) AS Total_Transaction_Amount

FROM Sellers S

LEFT JOIN Items I ON S.Seller_ID = I.Seller_ID

LEFT JOIN Transactions T ON I.Item_ID = T.Item_ID

GROUP BY S.Seller_ID, S.Username;

4. Aggregate Function: Get the average account balance of all buyers

SELECT AVG(Account_Balance) AS Average_Account_Balance

FROM Buyers;

5. Complex Query: Get the total number of auctions that ended with a

successful bid

SELECT COUNT(DISTINCT A.Auction_ID) AS Successful_Auctions

FROM Auctions A

INNER JOIN Bids B ON A.Item_ID = B.Item_ID

WHERE B.Bid_Status = 'Successful';

6. Nested Query: Get all items listed in a specific category

SELECT *

FROM Items

WHERE Category = (

 SELECT Category

 FROM Items

 GROUP BY Category

 HAVING COUNT(*) > 1

 LIMIT 1

);

TRIGGERS AND PROCEDURE

a) Write TRIGGERS on tables for entered data validations, updating

derived attributes, updating foreign key data updates, etc. See that

how TRIIGERS will help to make correct, non-repeated data entry.

Triggers:

1. Unique Buyer and Seller username

TRIGGER CODE:

DELIMITER //

CREATE TRIGGER trg_unique_username

BEFORE INSERT ON Buyers

FOR EACH ROW

BEGIN

 DECLARE username_count INT;

 SELECT COUNT(*) INTO username_count FROM Buyers WHERE Username = NEW.Username;

 IF username_count > 0 THEN

 SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Username already exists in

Buyers table';

 END IF;

END //

CREATE TRIGGER trg_unique_username_seller

BEFORE INSERT ON Sellers

FOR EACH ROW

BEGIN

 DECLARE username_count INT;

 SELECT COUNT(*) INTO username_count FROM Sellers WHERE Username =

NEW.Username;

 IF username_count > 0 THEN

 SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Username already exists in

Sellers table';

 END IF;

END //

DELIMITER ;

TRIGGER EXPLANATION:

These triggers ensure that a username is unique within the respective tables

Buyers and Sellers.

1. Trigger for Buyers Table (trg_unique_username):

• This trigger is fired before inserting a new row into the Buyers

table.

• It checks if the Username being inserted already exists in the

Buyers table.

• If a record with the same Username already exists, it raises an

error using SIGNAL SQLSTATE with a custom error message.

• This prevents the insertion of a duplicate username into the Buyers

table.

2. Trigger for Sellers Table (trg_unique_username_seller):

• This trigger is similar to the previous one but applies to the Sellers

table.

• It is fired before inserting a new row into the Sellers table.

• It checks if the Username being inserted already exists in the

Sellers table.

• If a record with the same Username already exists, it raises an

error using SIGNAL SQLSTATE with a custom error message.

• This ensures that usernames are unique within the Sellers table.

INSERT INTO Buyers (Buyer_ID, Username, Password, Email, Address,

Account_Balance) VALUES (99, 'raj_sharma', 'password123', 'raj@example.com', '123

Street', 1000.00);

INSERT INTO Sellers (Seller_ID, Username, Password, Email, Address,

Account_Balance) VALUES (99, 'fashion_hub', 'password456', 'fashion@example.com',

'456 Avenue', 2000.00);

If we try to insert a duplicate username for either buyers or sellers, the triggers

will prevent it and raise an error.

2. Set Last_Bid Default Value

TRIGGER CODE:

DELIMITER //

CREATE TRIGGER set_last_bid_default BEFORE INSERT ON items

FOR EACH ROW

BEGIN

 IF NEW.Last_bid IS NULL THEN

 SET NEW.Last_bid = NEW.Starting_Price;

 END IF;

END//

DELIMITER ;

TRIGGER EXPLANATION:

This trigger ensures that when a new row is inserted into the Items table, the

Last_bid field is set to the Starting_Price if it's initially NULL.

Trigger Description:

• Trigger Name: set_last_bid_default

• Event: BEFORE INSERT on the Items table.

• Trigger Type: FOR EACH ROW, meaning it will execute for each row

being inserted.

• Action: Sets the Last_bid field to the Starting_Price if Last_bid is

initially NULL for the row being inserted.

Explanation:

1. IF Statement:

• Checks if the Last_bid field for the new row being inserted is

NULL (IF NEW.Last_bid IS NULL).

2. Setting Default Value:

• If the Last_bid is indeed NULL, it sets the Last_bid field to the

Starting_Price for that item (SET NEW.Last_bid =

NEW.Starting_Price;).

Purpose:

• This trigger ensures that when a new item is added to the Items table and

no previous bids have been made (thus Last_bid is NULL), the Last_bid

field is initialized with the Starting_Price of the item. This helps to

maintain consistency in the data and ensures that there is always a starting

point for bidding on an item.

3. Update Last Bid trigger

TRIGGER CODE:

DELIMITER //

CREATE TRIGGER trg_update_last_bid

AFTER INSERT ON Bids

FOR EACH ROW

BEGIN

 UPDATE Items

 SET Last_Bidder = NEW.Bidder_ID,

 Last_Bid = NEW.Bid_Amount

 WHERE Item_ID = NEW.Item_ID;

END //

DELIMITER ;

TRIGGER EXPLANATION:

This trigger, named trg_update_last_bid, is designed to update the

Last_Bidder and Last_Bid fields in the Items table whenever a new bid is

inserted into the Bids table.

Trigger Description:

• Trigger Name: trg_update_last_bid

• Event: AFTER INSERT on the Bids table.

• Trigger Type: FOR EACH ROW, indicating that the trigger will

execute once for each row that is inserted into the Bids table.

• Action: Updates the Last_Bidder and Last_Bid fields in the Items table

based on the information of the newly inserted bid.

Explanation:

1. UPDATE Statement:

• The trigger executes an UPDATE statement on the Items table.

• It sets the Last_Bidder field in the Items table to the Bidder_ID

of the newly inserted bid (SET Last_Bidder = NEW.Bidder_ID).

• It also updates the Last_Bid field in the Items table to the

Bid_Amount of the newly inserted bid (SET Last_Bid =

NEW.Bid_Amount).

2. WHERE Clause:

• The UPDATE statement applies these changes only to the row in

the Items table where the Item_ID matches the Item_ID of the

newly inserted bid (WHERE Item_ID = NEW.Item_ID).

Purpose:

• This trigger ensures that whenever a new bid is made on an item (Bids

table), the corresponding Last_Bidder and Last_Bid fields in the Items

table are updated accordingly. This helps to keep track of the latest bid

and the bidder for each item without requiring manual updates.

EXAMPLE:

INSERT INTO Bids (Bid_ID, Bidder_ID, Item_ID, Bid_Amount, Bid_Time, Bid_Status,

Bid_Increment) VALUES (123, 1, 19, 200.00, NOW(), 'Active', 0.00);

SELECT Last_Bidder, Last_Bid FROM Items WHERE Item_ID = 19;

After inserting a new bid into the Bids table with Item_ID 19, the trigger

will automatically update the Last_Bidder and Last_Bid fields in the Items

table. We can then retrieve this updated information using the SELECT

statement provided.

4. Update Buyer and Seller balance

TRIGGER CODE:

DELIMITER //

CREATE TRIGGER trg_update_buyer_balance

AFTER INSERT ON Transactions

FOR EACH ROW

BEGIN

 DECLARE current_balance DECIMAL(10, 2);

 SELECT Account_Balance INTO current_balance FROM Buyers WHERE Buyer_ID =

NEW.Buyer_ID;

 IF current_balance >= NEW.Transaction_Amount THEN

 UPDATE Buyers

 SET Account_Balance = current_balance - NEW.Transaction_Amount

 WHERE Buyer_ID = NEW.Buyer_ID;

 ELSE

 SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = 'Insufficient balance for the

transaction';

 END IF;

END //

DELIMITER ;

DELIMITER //

CREATE TRIGGER trg_update_seller_balance

AFTER INSERT ON Transactions

FOR EACH ROW

BEGIN

 UPDATE Sellers

 SET Account_Balance = Account_Balance + NEW.Transaction_Amount

 WHERE Seller_ID = NEW.Seller_ID;

END //

DELIMITER ;

TRIGGER EXPLANATION:

These two triggers, trg_update_buyer_balance and

trg_update_seller_balance, are designed to update the account balances of

buyers and sellers respectively after a new transaction is inserted into the

Transactions table.

Trigger trg_update_buyer_balance:

• Trigger Name: trg_update_buyer_balance

• Event: AFTER INSERT on the Transactions table.

• Trigger Type: FOR EACH ROW, meaning it executes once for each row

that is inserted into the Transactions table.

• Purpose: Update the account balance of the buyer who made the

transaction.

Explanation:

1. DECLARE Statement:

• Declares a local variable current_balance of type DECIMAL(10,

2) to store the current account balance of the buyer.

2. SELECT Statement:

• Retrieves the current account balance of the buyer

(Account_Balance) from the Buyers table based on the Buyer_ID

of the newly inserted transaction (NEW.Buyer_ID).

3. IF Statement:

• Checks if the current balance (current_balance) is sufficient for

the transaction amount (NEW.Transaction_Amount).

4. UPDATE Statement (IF condition is met):

• If the current balance is sufficient, it updates the buyer's account

balance by subtracting the transaction amount.

5. SIGNAL Statement (IF condition is not met):

• If the current balance is insufficient, it raises an error using

SIGNAL SQLSTATE with a custom error message indicating

"Insufficient balance for the transaction".

Trigger trg_update_seller_balance:

• Trigger Name: trg_update_seller_balance

• Event: AFTER INSERT on the Transactions table.

• Trigger Type: FOR EACH ROW.

• Purpose: Update the account balance of the seller who made the

transaction.

Explanation:

1. UPDATE Statement:

• Updates the account balance of the seller by adding the transaction

amount (NEW.Transaction_Amount) to their existing account

balance.

Tests:

• After inserting a new transaction into the Transactions table, you can

verify the updated account balances of the buyer and seller by querying

the Buyers and Sellers tables respectively.

EXAMPLE:

INSERT INTO Transactions (Transaction_ID, Buyer_ID, Seller_ID, Item_ID,

Transaction_Amount, Transaction_Time, Payment_Method, Transaction_Status) VALUES

(456, 1, 2, 19, 500.00, NOW(), 'Credit Card', 'Success');

SELECT Account_Balance FROM Buyers WHERE Buyer_ID = 1;

SELECT Account_Balance FROM Sellers WHERE Seller_ID = 2;

6. Set Winning Bid After Auction Update

TRIGGER CODE:

DELIMITER //

CREATE TRIGGER after_auction_update_set_winning_bid_trigger

AFTER UPDATE ON Auctions

FOR EACH ROW

BEGIN

 DECLARE max_bid_id INT;

 DECLARE bidder_id INT;

 DECLARE winning_bid DECIMAL(10, 2);

 IF NEW.Auction_Status = 'Closed' AND OLD.Auction_Status != 'Closed' THEN

 -- Selecting the highest bid amount for the item

 SELECT MAX(Bid_Amount) INTO winning_bid FROM Bids WHERE Item_ID =

NEW.Item_ID;

 IF winning_bid IS NOT NULL THEN

 -- Selecting the maximum bid ID and incrementing it by 1 for the new

bid

 SELECT COALESCE(MAX(Bid_ID), 0) + 1 INTO max_bid_id FROM Bids;

 -- Selecting the bidder ID associated with the highest bid

 SELECT Bidder_ID INTO bidder_id FROM Bids WHERE Item_ID = NEW.Item_ID

AND Bid_Amount = winning_bid ORDER BY Bid_Time DESC LIMIT 1;

 -- Inserting the winning bid into the Bids table

 IF bidder_id IS NOT NULL THEN

 INSERT INTO Bids (Bid_ID, Bidder_ID, Item_ID, Bid_Amount,

Bid_Time, Bid_Status, Bid_Increment)

 VALUES (max_bid_id, bidder_id, NEW.Item_ID, winning_bid, NOW(),

'Winning', 0);

 END IF;

 END IF;

 END IF;

END //

DELIMITER ;

TRIGGER EXPLANATION:

This trigger, named after_auction_update_set_winning_bid_trigger, is

designed to automatically set the winning bid for an item in the Bids table

after an auction is closed.

Trigger Description:

• Trigger Name: after_auction_update_set_winning_bid_trigger

• Event: AFTER UPDATE on the Auctions table.

• Trigger Type: FOR EACH ROW, meaning it executes once for each row

that is updated in the Auctions table.

• Purpose: Automatically sets the winning bid for an item in the Bids table

when the corresponding auction is closed.

Explanation:

1. IF Statement:

• Checks if the Auction_Status has changed to 'Closed' (IF

NEW.Auction_Status = 'Closed' AND OLD.Auction_Status !=

'Closed'), indicating that the auction has been closed.

2. Selecting the Winning Bid:

• If the auction is closed, it selects the highest bid amount

(MAX(Bid_Amount)) for the item associated with the closed

auction and stores it in the winning_bid variable.

3. Handling Winning Bid Existence:

• If a winning bid exists (winning_bid IS NOT NULL), it proceeds

to select the maximum bid ID and increments it by 1 to generate a

new bid ID for the winning bid.

• It then selects the bidder ID associated with the highest bid amount

for the item.

4. Inserting Winning Bid:

• If a bidder ID is found (bidder_id IS NOT NULL), it inserts a

new row into the Bids table with the generated bid ID, bidder ID,

item ID, winning bid amount, current timestamp, 'Winning' status,

and zero bid increment.

Test:

• The provided test updates the Auction_Status of a specific auction

(Auction_ID = 24) to 'Closed' and then selects the winning bid from the

Bids table for the item associated with that auction.

Example:

UPDATE Auctions SET Auction_Status = 'Closed' WHERE Auction_ID = 24;

SELECT * FROM Bids WHERE Item_ID = (SELECT Item_ID FROM Auctions WHERE Auction_ID

= 24) AND Bid_Status = 'Winning';

7. Insert Transaction on Auction End

TRIGGER CODE:

DELIMITER //

CREATE TRIGGER end_auction_insert_transactions_trigger

BEFORE UPDATE ON Auctions

FOR EACH ROW

BEGIN

 DECLARE new_transaction_id INT;

 -- Check if the auction end time is in the past or now

 IF OLD.Auction_Status != 'Closed' AND NEW.Auction_Status = 'Closed' AND

NEW.Auction_End_Time <= NOW() THEN

 -- Generate a new transaction ID by incrementing the maximum transaction

ID

 SET new_transaction_id = (SELECT COALESCE(MAX(Transaction_ID), 0) + 1 FROM

Transactions);

 -- Fetch the Last_Bidder and Last_Bid from the Items table based on the

Item_ID associated with the auction

 SET @bidder_username := (SELECT Last_Bidder FROM Items WHERE Item_ID =

NEW.Item_ID);

 SET @last_bid := (SELECT Last_Bid FROM Items WHERE Item_ID = NEW.Item_ID);

 -- Fetch the Buyer_ID using the bidder's username

 SET @buyer_id := (SELECT Buyer_ID FROM Buyers WHERE Username =

@bidder_username);

 -- Insert a new transaction into the Transactions table

 INSERT INTO Transactions (Transaction_ID, Buyer_ID, Seller_ID, Item_ID,

Transaction_Amount, Transaction_Time, Payment_Method, Transaction_Status)

 VALUES (

 new_transaction_id, -- New transaction ID

 @buyer_id, -- Buyer ID based on Last_Bidder

 (SELECT Seller_ID FROM Items WHERE Item_ID = NEW.Item_ID), -- Seller

ID from the auction

 NEW.Item_ID, -- Item ID from the auction

 @last_bid, -- Last bid amount from the auction

 NOW(), -- Current timestamp

 'Online', -- Payment method (assuming online)

 'Completed' -- Transaction status (assuming completed)

);

 -- Update the buyer's account balance by subtracting the last bid amount

 UPDATE Buyers

 SET Account_Balance = Account_Balance - @last_bid

 WHERE Buyer_ID = @buyer_id;

 END IF;

END //

DELIMITER ;

TRIGGER EXPLANATION:

This trigger, named end_auction_insert_transactions_trigger, is

designed to automatically insert a transaction into the Transactions table

and update the buyer's account balance when an auction is closed.

Trigger Description:

• Trigger Name: end_auction_insert_transactions_trigger

• Event: BEFORE UPDATE on the Auctions table.

• Trigger Type: FOR EACH ROW, indicating that the trigger will execute

once for each row that is updated in the Auctions table.

• Purpose: Automatically inserts a transaction into the Transactions table

and updates the buyer's account balance when the auction is closed and

its end time has passed.

Explanation:

1. IF Statement:

• Checks if the Auction_Status has changed to 'Closed' (IF

OLD.Auction_Status != 'Closed' AND NEW.Auction_Status =

'Closed') and if the Auction_End_Time is less than or equal to the

current time (AND NEW.Auction_End_Time <= NOW()),

indicating that the auction has ended.

2. Generating Transaction ID:

• Generates a new transaction ID by incrementing the maximum

transaction ID found in the Transactions table.

3. Fetching Bidder Information:

• Retrieves the Last_Bidder and Last_Bid from the Items table

based on the Item_ID associated with the auction.

4. Fetching Buyer ID:

• Retrieves the Buyer_ID using the bidder's username obtained in

the previous step.

5. Inserting Transaction:

• Inserts a new row into the Transactions table with the generated

transaction ID, buyer ID, seller ID (obtained from the Items table),

item ID, last bid amount, current timestamp, payment method

('Online'), and transaction status ('Completed').

6. Updating Buyer's Account Balance:

• Updates the buyer's account balance by subtracting the last bid

amount (@last_bid).

Test:

• The provided test doesn't explicitly show how the trigger works but

assumes that an auction with a specific Auction_ID has ended, triggering

the update on the Auctions table. The trigger then automatically inserts a

transaction into the Transactions table and updates the buyer's account

balance.

Example:

UPDATE Auctions

SET Auction_Status = 'Closed'

WHERE Auction_ID = 16

-- Check the latest transaction

SELECT * FROM Transactions ORDER BY Transaction_ID DESC LIMIT 1;

-- Check the buyer's account balance

SELECT * FROM Buyers WHERE Buyer_ID = buyer_id;

After executing this update statement, the trigger will automatically insert

a transaction into the Transactions table and update the buyer's account

balance if the conditions specified in the trigger are met.

8. Update Auction Status

TRIGGER CODE:

DELIMITER $$

CREATE TRIGGER update_auction_status

BEFORE INSERT ON auctions

FOR EACH ROW

BEGIN

 IF NEW.Auction_End_Time <= NOW() THEN

 SET NEW.Auction_Status = 'Closed';

 END IF;

END$$

DELIMITER ;

test

-- Insert a new auction with Auction_End_Time set to a past time

INSERT INTO auctions (Auction_ID, Item_ID, Auction_Start_Time, Auction_End_Time,

Auction_Status, Reserve_Price)

VALUES (99, 1, '2024-05-01 12:00:00', '2024-05-15 12:00:00', 'pen', 100.00);

-- Check the inserted auction

SELECT * FROM auctions WHERE Auction_ID = 99;

TRIGGER EXPLANATION:

 This trigger, named update_auction_status, is designed to

automatically update the Auction_Status field when a new auction is

inserted into the auctions table.

Trigger Description:

• Trigger Name: update_auction_status

• Event: BEFORE INSERT on the auctions table.

• Trigger Type: FOR EACH ROW, indicating that the trigger will execute

once for each row that is being inserted into the auctions table.

• Purpose: Automatically updates the Auction_Status field to 'Closed' if

the Auction_End_Time for the new auction is in the past or equals the

current time.

Explanation:

1. IF Statement:

• Checks if the Auction_End_Time for the new auction

(NEW.Auction_End_Time) is less than or equal to the current

time (NOW()).

2. Updating Auction Status:

• If the Auction_End_Time is indeed in the past or equals the

current time, it sets the Auction_Status for the new auction

(NEW.Auction_Status) to 'Closed'.

Test:

• The provided test inserts a new auction into the auctions table with an

Auction_End_Time that is set to a past time ('2024-05-15 12:00:00').

This should trigger the execution of the trigger, automatically updating

the Auction_Status to 'Closed'.

Example:

-- Insert a new auction with Auction_End_Time set to a past time

INSERT INTO auctions (Auction_ID, Item_ID, Auction_Start_Time, Auction_End_Time,

Auction_Status, Reserve_Price)

VALUES (99, 1, '2024-05-01 12:00:00', '2024-05-15 12:00:00', 'pen', 100.00);

-- Check the inserted auction

SELECT * FROM auctions WHERE Auction_ID = 99;

After executing this insert statement, the trigger will automatically update

the Auction_Status to 'Closed' for the newly inserted auction because its

Auction_End_Time is in the past. When you check the inserted auction,

you should see the updated Auction_Status reflecting this change.

9. Create Bid Entry on Update in items

TRIGGER CODE:

DELIMITER $$

DROP TRIGGER IF EXISTS create_bid_entry_after_update $$

CREATE TRIGGER create_bid_entry_after_update

AFTER UPDATE ON items

FOR EACH ROW

BEGIN

 DECLARE bidder_id INT;

 DECLARE last_bid DECIMAL(10, 2);

 DECLARE bid_increment DECIMAL(10, 2);

 SET bidder_id = (SELECT Buyer_ID FROM buyers WHERE Username =

NEW.Last_Bidder);

 SELECT Last_Bid INTO last_bid FROM items WHERE Item_ID = NEW.Item_ID;

 SET bid_increment = GREATEST(NEW.Last_Bid - COALESCE(last_bid, 0), 0);

 INSERT INTO bids (Bid_ID, Bidder_ID, Item_ID, Bid_Amount, Bid_Time,

Bid_Status, Bid_Increment)

 SELECT COALESCE(MAX(Bid_ID), 0) + 1, bidder_id, NEW.Item_ID, NEW.Last_Bid,

NOW(), 'Outbid', bid_increment FROM bids;

END$$

DELIMITER ;

TRIGGER EXPLANATION:

This trigger, named create_bid_entry_after_update, is designed to

automatically create a new bid entry in the bids table after an update on

the items table.

Trigger Description:

• Trigger Name: create_bid_entry_after_update

• Event: AFTER UPDATE on the items table.

• Trigger Type: FOR EACH ROW, indicating that the trigger will execute

once for each row that is updated in the items table.

• Purpose: Automatically creates a new bid entry in the bids table when

the Last_Bid field of an item is updated.

Explanation:

1. Declaration of Variables:

• Declares three variables: bidder_id to store the ID of the bidder,

last_bid to store the last bid amount for the item, and

bid_increment to store the difference between the new bid amount

and the previous bid amount.

2. Fetching Bidder ID:

• Sets the bidder_id variable by selecting the Buyer_ID from the

buyers table based on the username (NEW.Last_Bidder) provided

in the updated row.

3. Fetching Last Bid:

• Selects the Last_Bid from the items table based on the Item_ID of

the updated row and stores it in the last_bid variable.

4. Calculating Bid Increment:

• Calculates the bid increment by finding the difference between the

new bid amount (NEW.Last_Bid) and the previous bid amount

(last_bid). It ensures that the bid increment is always non-negative.

5. Inserting Bid Entry:

• Inserts a new row into the bids table with the following values:

• Bid_ID: The maximum bid ID incremented by 1.

• Bidder_ID: The ID of the bidder fetched earlier.

• Item_ID: The Item_ID of the updated row.

• Bid_Amount: The new bid amount (NEW.Last_Bid).

• Bid_Time: The current timestamp.

• Bid_Status: 'Outbid' indicating that the previous bid has

been outbid.

• Bid_Increment: The calculated bid increment.

Test:

• This trigger is automatically executed after an update is performed on the

items table. You can simulate this by updating the Last_Bid field of an

item in the items table.

Example:

-- Update the Last_Bid field of an item in the items table

UPDATE items SET Last_Bid = 150.00 WHERE Item_ID = 1;

-- This update will trigger the execution of the trigger

create_bid_entry_after_update

After executing this update statement, the trigger will automatically

create a new bid entry in the bids table based on the updated Last_Bid

value for the item with Item_ID 1.

b) Write PROCEDURES to minimize the complexity of

AGGREGATE functions used in SQL Query, to create NEW

FUNCTIONS for which AGGREGATE function is not available, etc.

PROCEDURES:

1. CalculateAverageTransaction: This procedure calculates the average

transaction amount for a given seller ID. It takes the seller ID as input and

calculates the average transaction amount by querying the Transactions

table for transactions made by that seller. The result is then returned.

PROCEDURE CODE:

DELIMITER //

CREATE PROCEDURE CalculateAverageTransaction(IN sellerID INT)

BEGIN

 DECLARE avgTransaction DECIMAL(10, 2);

 SELECT AVG(Transaction_Amount) INTO avgTransaction

 FROM Transactions

 WHERE Seller_ID = sellerID;

 SELECT avgTransaction;

END //

DELIMITER ;

PROCEDURE EXAMPLE:

CALL CalculateAverageTransaction(1);

2. CountBidsForItem: This procedure counts the number of bids for a

given item ID. It takes the item ID as input and calculates the count by

querying the Bids table for bids made on that item. The result is then

returned.

PROCEDURE CODE:

DELIMITER //

CREATE PROCEDURE CountBidsForItem(IN itemID INT)

BEGIN

 DECLARE bidCount INT;

 SELECT COUNT(*) INTO bidCount

 FROM Bids

 WHERE Item_ID = itemID;

 SELECT bidCount;

END //

DELIMITER ;

PROCEDURE EXAMPLE:

CALL CountBidsForItem(1);

3. FindMaxBidAmountForItem: This function finds the maximum bid

amount for a given item ID. It takes the item ID as input and calculates

the maximum bid amount by querying the Bids table for bids made on

that item. The maximum bid amount is then returned.

PROCEDURE CODE:

DELIMITER //

CREATE FUNCTION FindMaxBidAmountForItem(itemID INT) RETURNS DECIMAL(10, 2)

BEGIN

 DECLARE maxBid DECIMAL(10, 2);

 SELECT MAX(Bid_Amount) INTO maxBid

 FROM Bids

 WHERE Item_ID = itemID;

 RETURN maxBid;

END //

DELIMITER ;

PROCEDURE EXAMPLE:

SELECT FindMaxBidAmountForItem(1);

4. CalculateTotalSalesAmount: This procedure calculates the total sales

amount for a given seller ID. It takes the seller ID as input and calculates

the total sales amount by querying the Transactions table for transactions

made by that seller. The result is then returned.

PROCEDURE CODE:

DELIMITER //

CREATE PROCEDURE CalculateTotalSalesAmount(IN sellerID INT)

BEGIN

 DECLARE totalSales DECIMAL(10, 2);

 SELECT SUM(Transaction_Amount) INTO totalSales

 FROM Transactions

 WHERE Seller_ID = sellerID;

 SELECT totalSales;

END //

DELIMITER ;

PROCEDURE EXAMPLE:

CALL CalculateTotalSalesAmount(1);

5. CalculateAverageAuctionDuration: This procedure calculates the

average duration of auctions in a given category. It takes the category as

input and calculates the average duration by querying the Auctions and

Items tables, joining them on the Item_ID, and filtering by the specified

category. The duration of each auction is calculated using the difference

between the auction start and end times. The average duration is then

returned.

PROCEDURE CODE:

DELIMITER //

DROP PROCEDURE IF EXISTS CalculateAverageAuctionDuration;

DELIMITER //

CREATE PROCEDURE CalculateAverageAuctionDuration(IN category VARCHAR(50))

BEGIN

 DECLARE avgDuration DECIMAL(10, 2);

 SELECT AVG(TIMESTAMPDIFF(SECOND, Auctions.Auction_Start_Time,

Auctions.Auction_End_Time)) INTO avgDuration

 FROM Auctions

 INNER JOIN Items ON Auctions.Item_ID = Items.Item_ID

 WHERE Items.Category = category;

 SELECT avgDuration;

END //

DELIMITER ;

PROCEDURE EXAMPLE:

CALL CalculateAverageAuctionDuration('Electronics');

6. CountItemsSoldByBuyer: This function counts the number of items sold

by a given buyer ID. It takes the buyer ID as input and calculates the

count by querying the Transactions table for transactions where the

specified buyer is the buyer. The count is then returned.

PROCEDURE CODE:

DELIMITER //

CREATE FUNCTION CountItemsSoldByBuyer(buyerID INT) RETURNS INT

BEGIN

 DECLARE itemCount INT;

 SELECT COUNT(*) INTO itemCount

 FROM Transactions

 WHERE Buyer_ID = buyerID;

 RETURN itemCount;

END //

DELIMITER ;

PROCEDURE EXAMPLE:

SELECT CountItemsSoldByBuyer(1);

Declare which part of the database has triggers and procedures

defined:

In most modern database systems, the Information Schema contains views

related to triggers, providing insights into their definitions and associated

objects. Commonly, these views include:

• Triggers View: This view typically contains metadata about triggers

defined in the database, including their names, associated tables, events,

and actions.

• Trigger Columns View: Some systems offer this view to provide details

about the columns affected by each trigger.

Procedures in the Information Schema:

Similar to triggers, procedures also have their metadata exposed through the

Information Schema, facilitating querying and analysis. Relevant views may

include:

• Routines View: This view usually lists all routines (including procedures

and functions) defined in the database, along with their names, types, and

other attributes.

• Routine Parameters View: If procedures accept parameters, this view

provides information about the parameters, such as names, data types,

and positions.

TO VIEW ALL TRIGGERS:

SELECT

 TRIGGER_NAME,

 EVENT_OBJECT_TABLE

FROM

 INFORMATION_SCHEMA.TRIGGERS;

TO VIEW ALL PROCEDURES:

SELECT

 ROUTINE_SCHEMA,

 ROUTINE_NAME

FROM INFORMATION_SCHEMA.ROUTINES

WHERE ROUTINE_TYPE = 'PROCEDURE';

Explain the Data Dictionary details for Triggers and Procedures.

Triggers and procedures are defined within the schema of the online auction

system database. Triggers are defined to enforce data integrity, handle automatic

updates, and perform certain actions upon specific events in the database tables.

Procedures are defined to encapsulate reusable logic for performing calculations

or data analysis within the database.

Specifically, the triggers are defined for the following tables:

• Buyers

• Sellers

• Items

• Bids

• Auctions

• Transactions

The procedures are defined to perform various calculations and data analysis

tasks within the database, such as calculating averages, counting bids, finding

maximum bid amounts, and calculating total sales amounts.

Triggers:

1. trg_unique_username:

• Description: Ensures uniqueness of usernames in the Buyers table.

• Event: BEFORE INSERT ON Buyers

• Action: Checks if the inserted username already exists in the

Buyers table and signals an error if it does.

2. trg_unique_username_seller:

• Description: Ensures uniqueness of usernames in the Sellers table.

• Event: BEFORE INSERT ON Sellers

• Action: Checks if the inserted username already exists in the

Sellers table and signals an error if it does.

3. set_last_bid_default:

• Description: Sets the Last_Bid field to the Starting_Price if it is

null when inserting into the Items table.

• Event: BEFORE INSERT ON Items

• Action: If the Last_Bid field is null, it sets it to the Starting_Price.

4. trg_update_last_bid:

• Description: Updates the Last_Bidder and Last_Bid fields in the

Items table after a bid is inserted.

• Event: AFTER INSERT ON Bids

• Action: Updates the Last_Bidder and Last_Bid fields in the Items

table based on the inserted bid.

5. trg_update_buyer_balance:

• Description: Updates the Account_Balance of the buyer after a

transaction is inserted, checking for sufficient balance.

• Event: AFTER INSERT ON Transactions

• Action: Checks if the buyer has sufficient balance for the

transaction and updates the Account_Balance accordingly.

6. trg_update_seller_balance:

• Description: Updates the Account_Balance of the seller after a

transaction is inserted.

• Event: AFTER INSERT ON Transactions

• Action: Updates the Account_Balance of the seller based on the

inserted transaction.

7. after_auction_update_set_winning_bid_trigger:

• Description: Sets the winning bid for an item after an auction is

closed.

• Event: AFTER UPDATE ON Auctions

• Action: Sets the winning bid for an item if the auction status is

changed to 'Closed'.

8. end_auction_insert_transactions_trigger:

• Description: Inserts a transaction after an auction ends.

• Event: BEFORE UPDATE ON Auctions

• Action: Inserts a transaction and updates buyer's account balance

after an auction ends.

9. update_auction_status:

• Description: Updates the Auction_Status to 'Closed' if the

Auction_End_Time is in the past when inserting into the Auctions

table.

• Event: BEFORE INSERT ON Auctions

• Action: Sets the Auction_Status to 'Closed' if the

Auction_End_Time is in the past.

10. create_bid_entry_after_update:

• Description: Inserts a bid entry after an item's Last_Bid is updated.

• Event: AFTER UPDATE ON Items

• Action: Inserts a bid entry with the updated Last_Bid value.

Procedures:

1. CalculateAverageTransaction:

• Description: Calculates the average transaction amount for a given

seller.

• Parameters: sellerID (INT)

• Returns: avgTransaction (DECIMAL)

2. CountBidsForItem:

• Description: Counts the number of bids for a given item.

• Parameters: itemID (INT)

• Returns: bidCount (INT)

3. FindMaxBidAmountForItem:

• Description: Finds the maximum bid amount for a given item.

• Parameters: itemID (INT)

• Returns: maxBid (DECIMAL)

4. CalculateTotalSalesAmount:

• Description: Calculates the total sales amount for a given seller.

• Parameters: sellerID (INT)

• Returns: totalSales (DECIMAL)

5. CalculateAverageAuctionDuration:

• Description: Calculates the average duration of auctions for a

given category.

• Parameters: category (VARCHAR)

• Returns: avgDuration (DECIMAL)

6. CountItemsSoldByBuyer:

• Description: Counts the number of items sold by a given buyer.

• Parameters: buyerID (INT)

• Returns: itemCount (INT)

Write the SQL Queries for fetching/processing triggers and

procedures details.

Fetch Triggers Details:

-- Fetch all triggers in the database

SHOW TRIGGERS;

-- Fetch details of a specific trigger

SHOW CREATE TRIGGER trg_name;

Fetch Procedures Details:

-- Fetch all procedures in the database

SHOW PROCEDURES;

-- Fetch details of a specific procedure

SHOW CREATE PROCEDURE proc_name;

DATABASE CONNECTIVITY, GUI & REPORTS

BUYER PORTAL

Login Page:

View Products Page:

Bid on Product Page:

User Profile Page:

SELLER PORTAL

SELLER DASHBOARD PAGE:

PRODUCTS LISTED BY SELLER PAGE:

LIST NEW PRODUCT PAGE:

ADMIN PORTAL

ADMIN DASHBOARD PAGE:

AUCTIONS HISTORY PAGE:

TRANSACTIONS HISTORY PAGE:

BIDS PLACED PAGE:

