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1. INTRODUCTION

1.1. Lung Ultrasound Imaging

Renowned for its lower cost, portability, and effi-
ciency, lung ultrasound is a radiation-free practical
alternative to chest radiography, particularly in crit-
ical care and emergency settings. Ultrasound tests
can be administered bedside in under 3 minutes and
diagnose asthma, chronic obstructive pulmonary dis-
ease, pneumonia, pneumothorax, pulmonary edema,
and pulmonary embolism, often with better diagnos-
tic accuracy than chest radiography methods Marini
et al. (2021).

1.2. Baseline: B-Mode Imaging

In this project, we seek to improve upon the cur-
rent state-of-the-art for ultrasound-based lung imag-
ing: B-Mode imaging. In this technique, transducers
at the skin surface send focused ultrasound beams di-
rectly into the body. These beams reflect off of soft
tissue, bones, and air pockets inside the region of in-
terest and are received by transducers Matrone et al.
(2019). The received signals are processed to yield
the B-Mode image for a single line. This process is
repeated to cover the entire region of interest.

The following are key imaging features we are con-
cerned with when evaluating and improving ultra-
sound medical imaging techniques Demi (2018). Spa-
tial resolution refers to the smallest spatial distance
in which scatterers (bones, tissue, air) can be dis-
cerned from each other. Temporal resolution refers
to the time between samples. Contrast is the ease
by which different scatterers are differentiated from
one another. Finally, we are concerned with the

Fig. 1: Baseline: A chest ultrasound B-Mode image.

Note the limited spatial resolution. Medical professionals

rely on experience, pattern recognition, and comparisons

with reference images to extract meaning from these im-

ages. The chest wall (0-20 mm depth) can be roughly

distinguished from deeper lung tissue.

depth of imaging. While techniques that can image
deeper into the patient’s lung are preferred, ultra-
sound pulses that travel deeper are absorbed and re-
flected more frequently, resulting in received signals
that have been confounded with higher noise. Thus
at greater depths, we are less certain about the accu-
racy of our reconstructed images.
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Fig. 2: Curved Chest Wall Inference. On the left, we see

three distinct samples with curved lung chest walls. On

the right, we see ground truth and model predictions for

the 32 mm depth model.

2. OBJECTIVES

The objective of this research is to iterate and im-
prove on the novel neural network-based approach
(see 3) to ultrasound imaging, with the specific goal
of adapting the method for practical use in clinical
settings. In more detail. . .

1. Design, train, and fine-tune various neural net-
work architectures to generate accurate lung
density maps from raw ultrasound radio fre-
quency data. Explore the effectiveness of Self-
Supervised and Semi-Supervised Learning ap-
proaches, among other state-of-the-art machine-
learning techniques to learn from limited unla-
beled and labeled data.

2. Improve practical viability. Develop models that
are invariant to curved lung chest walls of vary-
ing depths and ultrasound measurement config-
urations (see Figure 2). Explore domain adap-
tation techniques that would allow models to be
deployed in practical settings Ben-David et al.
(2006).

3. Implement certainty layers to reveal inference
confidence at various chest depths. Evaluate in-
ference certainty at varying depths to analyze
the extent to which diffraction limits and instru-
ment noise confound predictions.

4. Quantify performance and improvements in
comparison to the current state-of-the-art: B-
mode images.

Fig. 3: Early Architecture. Raw ultrasound radio fre-

quency data first passes through the 1D Fourier Neural

Operator, is convolved to reduce dimension, and passes

through the UNet to yield 4x and 8x resolution inferences.

The model is trained for 60 epochs, with the AdamW op-

timizer and a composite loss function (L1 and L2 loss).

3. APPROACH

3.1. A Novel Approach: Neural Operator &
Neural Network-Based Inverse Solver

3.1.1. Theoretical Basis

Equation 1 is derived from the Elastic Wave Equa-
tion and describes a model for the nonlinear propa-
gation of waves in a heterogeneous medium. Three-
dimensional solutions to the equation have been con-
firmed with experimental measurements Pinton et al.
(2009). As such, the elastic wave equation is an effec-
tive model for ultrasound wave propagation in lung
tissue.
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In this equation, the raw ultrasound radio fre-
quency data is denoted by Ψ and the image (density
map) is given by ρ. As such, the problem of imaging
the lung can be reduced into an inverse problem in
which the objective is to reconstruct the lung density
map ρ. We train a machine learning model to learn
the mapping from observed radio frequency data Ψ
to a density map (image) ρ.

3.1.2. Early Architecture

Dr. Jiayun (Peter) Wang has implemented an early
architecture incorporating neural operators and a
UNet-inspired network to learn the mapping from
ultrasound radio frequency data to lung aeration
images 3. Neural operators learn mappings be-
tween infinite-dimensional function spaces; it has
been shown that neural operators are well-suited for
partial differential equation solution approximation
Kovachki et al. (2023).
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Fig. 4: Lung aeration ground truth and predictions im-

ages for 32-depth and 48-depth variant models. Pixels

take on values continuously from 0 (air) to 1 (liquid).

These predictions were made by the UNet model archi-

tecture discussed in 3.1.2

.

3.1.3. Advantages and Novelties

Our models output a precise density map ρ, allow-
ing medical professionals to distinguish tissue types
clearly. Additionally, the resulting density maps
are well-suited for segmentation Ronneberger et al.
(2015). Finally, neural networks can be altered in de-
sign to output pixel-wise inference confidence maps.
This allows medical practitioners to take into ac-
count the model’s certainty when making predic-
tions, a feature that is invaluable in practical use
cases. In comparison, the current baseline (B-Mode
images) vaguely distinguishes tissue types by bright-
ness. Softer tissues show up as darker spots, while
rigid structures show up as bright spots.

3.2. Dataset

3.2.1. Overview

Each sample in the dataset is a tuple (Ψi, ρi). Ψi

denotes raw radio frequency data recorded by ultra-
sound transducers for sample i; ρi denotes the cor-
responding two-dimensional lung density map. We
want to train a model to learn the mapping from
Ψ → ρ; as such, we treat each Ψi as the input data
and each ρi as the target.

The dimensions of each RF sample are given by
Ψi ∈ RT×M×N | T = 1509,M = 64, N = 128. The
first dimension T represents time while the second
and third dimensions M,N represent spatial infor-
mation, specifically transducer id’s. The dimensions
of each density map are given by ρi ∈ RD. Both di-
mensions represent spatial information; the first di-
mension D represents depth (under the skin) while
the second dimension L represents lateral position.

Fig. 5: Data Generation Process. Solving the elastic

wave equation from (Equation 1), we generate a dataset

of radio frequency data to density map image mappings.

Fig. 6: Ultrasound Transducer Configuration.

3.2.2. Generation

We generate a dataset of 4,500 mappings as described
in 3.2.1. For each sample’s density map, we use the
elastic wave equation outlined in (Equation 1) to gen-
erate the corresponding radio frequency data. This
process is repeated for each density map resulting in
a set of 4,500 tuples (Ψi, ρi) composing the entire
dataset. The process is illustrated in 5.

3.2.3. Ultrasound Transducer Configuration

The labeled dataset described in 3.2.1 and 3.2.2 is
collected using the following configuration. 256 trans-
ducers are placed in direct contact with the skin. In
a single event, pulses are sent out from 64 adjacent
transducers and received by 128 transducers. This
setup is illustrated in Figure 6.
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4. WORK PLAN

Weeks 1-2: Run baseline tests to quantify 32 depth
early model performance.
Weeks 2-4: Develop confidence layers and evaluate
inference certainty at depths of 48 and 64 mm.
Weeks 4-6: Apply domain adaptation techniques to
improve model performance on real clinical datasets.
Weeks 6-8: Implement SSL approaches and varied
neural network architectures; evaluate performance
and report on findings.
Weeks 8-10: Evaluate improvements, assemble in-
sights & conclusions, and prepare materials for final
presentation.
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