
1. Introduction
During geomagnetic storms, a large amount of energy in the form of Joule heating and particle precipitation 
is deposited in the high-latitude thermosphere, resulting in heating and expansion of the neutral gas (Mayr 
et al., 1978; Prölss, 1980). Storm-time high-latitude heating changes the pressure gradients in the E and F regions 
between the equatorial region and the poles, resulting in meridional winds perturbations that can quickly prop-
agate to lower latitudes in a few hours. Then, the overall modification of the thermospheric composition and 
increase of the neutral mass density occur globally (Balan et al., 2011; Fuller-Rowell et al., 1996; Li et al., 2019; 
H. Liu & Lühr, 2005; Roble et al., 1982; Wang et al., 2021). The enhanced thermospheric density, in turn, is the 
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cause of an enhanced atmospheric drag effect on the low-Earth-orbit (LEO) satellites and space debris (Anderson 
et al., 2009; Chen et al., 2012; Wright, 2007). Even during geomagnetically quiet days, the long-term accumu-
lated drag effect can also decrease the orbit altitude of LEO spacecraft due to the drag, which is proportional to 
the spacecraft area-over-mass ratio and the velocity of the spacecraft squared, as well as the neutral mass density 
(Emmert, 2015; Marcos, 2006; Sutton, 2018). The capability to accurately forecast variations of the thermo-
spheric neutral density is crucial to the operations of spacecraft in LEO, notably for orbit maintenance and colli-
sion avoidance (Brandt et al., 2020; Bussy-Virat et al., 2018; Mehta et al., 2019; Sutton et al., 2021).

The storm-time thermosphere behavior and variations can be investigated by using the thermospheric neutral 
mass density data set from LEO satellites, for instance, the Challenging Mini-satellite Payload (CHAMP) (e.g., 
Reigber et al., 2002), Gravity Recovery and Climate Experiment (GRACE) and the GRACE follow-on mission 
(GRACE-FO) (Tapley et al., 2004) or the Swarm constellation mission (van den IJssel & Visser, 2007). The ther-
mospheric mass density can be calculated from accelerometers onboard LEO satellites (Bruinsma et al., 2004; 
Doornbos, 2012; Villain, 1980), or from global navigation satellite system data used for precise orbit determi-
nation (POD) onboard LEO satellites (van den IJssel & Visser, 2007). The satellite-based thermospheric data 
helped to improve our understanding of the thermospheric state during storm times. Previous studies show that 
the rela tionship between the high-latitude input (e.g., Joule heating) and the thermosphere density enhancement 
driven by the storm is rather complex (Deng et  al.,  2011; Huang et  al.,  2012; Knipp et  al.,  2004,  2011; Lei 
et al., 2011; Lu et al., 2016). It has been well demonstrated that the neutral density increases at high latitudes 
shortly after the storm onset, generating large scale gravity waves, or traveling atmospheric disturbances (TAD), 
which take 4–6 hr to reach mid- and low latitudes (Bruinsma & Forbes, 2007; Oliveira et al., 2017; Zesta & 
Oliveira, 2019). Rapid variations of the heating cause oscillations of wind and temperature as well as large vari-
ations of the neutral composition and density. The observed storm-time variations of the thermospheric neutral 
mass density often show hemispheric/seasonal asymmetry, which is attributed to the prevailing summer-to-winter 
circulation (Astafyeva et al., 2017, 2020; Fuller-Rowell et al., 1996; H. Liu & Lühr, 2005; Sutton et al., 2005). 
Specifically, an easier equatorward propagation of the neutral density anomaly occurs in the summer hemisphere 
due to the superposition of the background and storm-driven circulations. However, the opposed circulation in 
the winter hemisphere hampers the propagation of the high-latitude perturbations toward low latitudes. In addi-
tion to the above-mentioned LEO satellites that measure density-related changes of satellite acceleration in situ, 
nowadays, the Global-scale Observations of the Limb and Disk (GOLD), the Ionospheric Connection Explorer 
(ICON) are also used to investigate the lower thermosphere responses during the storm times by remote sensing 
(Aa et al., 2022; Cai et al., 2021; Harding et al., 2022; Laskar et al., 2021b). However, because of the limitations 
of in situ LEO observations, notably due to the fixed orientation of the orbit plane with respect to the Sun for 
any given storm, it is not possible to infer the global storm-time response of the thermosphere solely based on 
observations.

Over the last decades, several general circulation models have been developed. General circulation models are 
based on the Navier-Stokes equation to self-consistently solve the density, velocity, and temperature of neutral 
components, and can reasonably provide time-dependent values for each parameter. These models include coupled 
ionosphere and thermosphere models or whole atmosphere models, such as the Thermosphere Ionosphere Elec-
trodynamics General Circulation Model (TIE-GCM, Richmond et al., 1992) and the Whole Atmosphere Commu-
nity Climate Model with thermosphere and ionosphere eXtension (WACCM-X, H.-L. Liu et al., 2018), etc. In 
addition, several empirical thermosphere models have been developed based on a variety of data, including the 
Drag Temperature Model (DTM, Bruinsma, 2015), and the Mass Spectrometer and Incoherent Scatter model 
(MSIS, Emmert et al., 2020). Some of these empirical models are employed in (operational) orbit computation 
because of their easy implementation and use.

On 3 February 2022, at 18:13  UTC, a SpaceX Falcon 9 rocket launched 49 Starlink internet satellites from 
the Kennedy Space Center in Florida. Space-X initially deployed 49 Starlink satellites with elliptical orbits 
between 210 and 320 km altitude. The Local Time (LT) sampling from the ascending orbits at the equator were 
at ∼12:45 LT. The satellites were meant to be further raised to 550 km. However, the launch and the satellite 
deployment took place during the main phase of a moderate geomagnetic storm that caused an increase in atmos-
pheric drag. The official communication from SpaceX stated that “onboard GPS suggested the escalation speed 
and severity of the storm caused atmospheric drag to increase up to 50% higher than during previous launches” 
(https://www.spacex.com/updates/ accessed on 8 February 2022). SpaceX tried to put the satellites into a “safe 
mode,” turning them to fly edge-on to minimize drag. However, the second phase of the storm hit and further 

https://www.spacex.com/updates/
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increased the drag, causing 38 out of 49 satellites to re-enter in the following days. The remaining 11 satellites 
were successfully maneuvered into their operational orbits after these events.

Several research groups performed initial studies of the thermospheric conditions during this storm event (Dang 
et al., 2022; T.-W. Fang et al., 2022; Kataoka et al., 2022; Laskar et al., 2022; Lin et al., 2022; Zhang et al., 2022). 
Specifically, Laskar et  al.  (2022) used the empirical NRLMSIS2.0 and showed that the neutral mass density 
increased by only ∼25% on 3–4 February 2022. Kataoka et al. (2022) used the real-time GAIA simulation and 
showed the mass density enhancement of up to 50% at 200 km. Dang et al. (2022) used TIE-GCM simulations 
and showed ∼20% increase in atmospheric density at 210 km altitude on 3 February as compared to the quiet 
condition. These results suggest that the storm-time density increase might be smaller than the 50% stated by 
SpaceX. Previous results have demonstrated that the storm-time density enhancement may be not accurately 
estimated by a single model due to the discrepancies between different model simulations. In addition, so far, 
the detailed comparisons of different coupled (magnetosphere) ionosphere and thermosphere models and whole 
atmosphere models have not been conducted in the simulated upper and lower thermospheric changes.

In this study, we provide a detailed investigation of the upper and lower thermospheric changes due to the storm 
event. For this purpose, we analyze thermosphere mass density from the POD of the Swarm-A satellite (∼438 km 
altitude) and the accelerometer of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO, 
∼505 km altitude). In addition, the observations are compared to densities from the following six empirical and 
physics-based models: DTM2013, MSIS2.0, Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics 
Model (CTIPe), Multiscale Atmosphere-Geospace Environment (MAGE), Whole Atmosphere Model-Ionosphere 
Plasmasphere Electrodynamics (WAM-IPE), and SD-WACCMX. The main aims of the current work are: (a) 
based on both Swarm-A and GRACE-FO observations, qualitatively characterize the thermospheric disturbance 
structure and quantitatively estimate the upper thermosphere mass density changes due to this storm, (b) assess 
the capability of the empirical and physics-based models to simulate this storm's effect in both amplitude and 
pattern of the thermospheric disturbance, and (c) analyze storm-time density changes in the lower thermosphere 
(∼200 and 300 km), where the Starlink satellites orbited after the launch.

2. Data and Models
2.1. Data

Our data set consists of GPS-derived thermosphere mass density from Swarm-A and accelerometer-derived mass 
density from GRACE-FO. During the storm, the Swarm-A orbital altitude varied between 426.8 and 456.3 km 
(the averaged altitude is 438 km) with 87.35° inclination. The LT sampling from the ascending and the descend-
ing orbits at the equator were at ∼09:00 and 21:00 LT. The temporal resolution of the recovered aerodynamic 
accelerations is about 15–20 min in the GPS-derived accelerations, equivalent to 7,000–9,000 km along the orbit 
(van den IJssel et al., 2020).

The orbital altitude of the GRACE-FO varied between 483.8 and 532.7 km, and the average orbit height was about 
505 km with an inclination of 89°. The LT samplings of the ascending and descending orbits were at ∼06:00 
and 18:00 LT. The time resolution is 10 s. The difference between the accelerometer data and the GPS-derived 
data are that the latter is a smoothed representation of the true accelerations, and therefore cannot be used to 
identify localized density variations and traveling atmosphere disturbances (Astafyeva et al., 2017; van den IJssel 
& Visser, 2007; van den IJssel et al., 2020). These two data sets can be downloaded from the websites https://
swarm-diss.eo.esa.int and http://thermosphere.tudelft.nl.

We did not include data from Swarm-B because it flew in the same LT sector as Swarm-A and at roughly the same 
altitude as GRACE-FO. Swarm-C has the same orbit as Swarm-A, and it is currently the only Swarm satellite provid-
ing accelerometer-based densities. However, the Swarm accelerometers are suffering from many issues that affect 
the quality of their observations. Siemes et al. (2016) have shown that the Swarm accelerometers are perturbed by 
a number of anomalies, including spikes, sudden changes in the accelerometer bias, and large temperature-induced 
bias variations. This significantly affects their usefulness for density retrieval. In addition, accurate accelerometer 
data are not available in the directions perpendicular to the flight direction (van den Ijssel et al., 2020).

In order to study the thermospheric response at lower altitudes, we used the GOLD level-2 disk temperatures 
(GOLD_Tndisk) data set. This remote sensing data set is available around the dayside over about ±70° latitude 
and 30°E–120°W longitude (∼1/4 globe) between about 06:00 and 23:00 universal time (UT) each day. It can be 

https://swarm-diss.eo.esa.int
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downloaded from the GOLD Science Data Center (http://gold.cs.ucf.edu). The GOLD_Tndisk is the integrated 
temperature accounting for weighting by the emissions at different heights, with the maximum weight at a height 
of approximately 160 km (Eastes et al., 2020). Therefore, it can be used to characterize the lower thermosphere 
variation (Laskar et al., 2022). To make the comparison between the observations and simulation results, the 
synthetic Tndisk from both the empirical and physics-based models are also calculated in the current work. In 
brief, the modeled Tndisk can be calculated as the integrated temperature accounting for the weighting by the 
emissions at different heights, and the maximum weight is at a height of approximately 160 km. The contribution 
function (weight) can be represented by the daytime N2 LBH band emissions, which can be found in more detail 
in Laskar et al. (2021a) and He et al. (2021).

2.2. Models

Two empirical and four physics-based models are used to evaluate the capability to reproduce the storm-time 
effects. The model resolutions and drivers used in this study are listed in Table 1. Note that all models were output 
on a regular grid in order to allow the same interpolation schemes and then to consistently make a comparison 
across the models.

1.  The Naval Research Laboratory MSIS version 2.0 (MSIS2.0) is an empirical atmosphere model that extends 
from the ground to the exosphere. It describes the temperature, density, and composition of the Earth's ther-
mosphere. The model inputs are the array of geomagnetic activity Ap index (i.e., daily and current time, 3, 6, 
and 9 hr before current time, and average values from 12 to 33 and 36 to57 hr prior to current time), 81-day 
average and daily F10.7 index. MSIS2.0 is a reformulated upgrade of the previous version, which couples the 
neutral species densities to the entire vertical column using the effective mass of species in a geopotential 
height coordinate. The cooler stratospheric and mesospheric temperatures likely have an influence on the 
thermosphere neutral densities (Emmert et al., 2020). For model outputs, the latitude resolution is 2.5°. The 
longitude resolution is 2.5°. In the vertical direction, the step is 10 km. The output model parameters are 
calculated with a 10-min time step in this study.

2.  The DTM 2013 (DTM2013) is a semi-empirical model reproducing the thermospheric temperature, 
density and composition in the altitude range from 120 to 1,500 km. DTM2013 assimilated high-resolution 
accelerometer-derived densities from CHAMP, GRACE, and low-altitude GOCE (Bruinsma,  2015). This 
model is run with the 30-cm solar radio flux (F30 index) and geomagnetic Kp index. In this study, the outputs 
of the model parameters have spatial resolutions of 0.9° in latitude, 1.8° in longitude, and 10 km in height, and 
temporal resolution of the output is 15 min.

3.  The MAGE couples together the Grid Agnostic magnetohydrodynamic (MHD) with Extended Research 
Applications (GAMERA) model of the magnetosphere, the Rice Convection Model of the ring current, 
and the TIE-GCM. In MAGE, the high-latitude inputs to TIE-GCM are provided via a coupling layer 
(RE-developed Magnetosphere-Ionosphere Coupler/Solver). This provides a more dynamic temporal varia-
tion of high-latitude convection and auroral precipitation compared to using the empirical Heelis or Weimer 
convection models and Ray and Roble precipitation model (Lin et al., 2021; Pham et al., 2022). Solar inputs 
from F10.7 radio solar flux measurements are used as a proxy for XUV/EUV/FUV solar flux as described by 
Solomon and Qian (2005). In this study, the thermosphere part, that is, TIE-GCM, has a uniform resolution 

Model Setting up parameters (solar | geomagnetic) Resolution (longitude, latitude, height, and time step)

MSIS 2.0 F10.7 | ap (array of 7 values) 2.5°, 2.5°, 10 km, and 10 min

DTM2013 F30 | Kp 1.8°, 0.9°, 10 km, and 15 min

MAGE Solomon and Qian bands | 1-min OMNI data 1.25°, 1.25°, 0.25 scale height, and 5 min

CTIPe Solomon and Qian bands | Weimer and TIROS 18°, 2°, 1 scale height, and 1 min

WAM-IPE F10.7 | Weimer, TIROS and OVATION 4°, 2°, 10 km, and 10 min

SD-WACCMX Solomon and Qian bands | Heelis 2.5°, 1.9°, 0.25 scale height, and 1 hr

Note. Note that the resolution here means the used model output grid and rate in this study.

Table 1 
The Summary of Models High Latitude Drivers and Resolutions

http://gold.cs.ucf.edu
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of 1.25° in horizontal direction, and a vertical pressure grid resolution of 0.25 scale height. The temporal 
resolution of the output is 5 min.

4.  The CTIPe consists of a global thermosphere, a high-latitude ionosphere, a mid- and low-latitude ionosphere/
plasmasphere, and an electrodynamical calculation of the global dynamo electric field. The thermosphere 
code was originally developed by Fuller-Rowell (1981), which simulated the time-dependent global structure 
of the neutral thermosphere by numerically solving the non-linear primitive equations of momentum, energy, 
and continuity on a three-dimensional spherical polar grid rotating with the Earth. The model is driven by the 
high-latitude empirical Weimer model, and by the magnitude of the interplanetary magnetic field (IMF) in the 
y-z plane, together with the velocity and density of the solar wind. The auroral precipitation is specified by 
an empirical model based on TIROS-NOAA satellite observations. Solar heating, ionization and dissociation 
rates, and their variations with solar activity are specified by the Solomon and Qian (2005) solar EUV energy 
deposition scheme for upper atmospheric general circulation models. The resolutions of the model outputs are 
2° in latitude, 18° in longitude. The temporal resolution of the output is 1 min.
 Due to the limitation of the upper boundary of CTIPe being ∼400 km for the time period of our study, that is, 
15 levels in a vertical direction in a logarithm of pressure from a lower boundary of 1 Pa (∼80 km altitude), we 
extrapolate the upper thermosphere mass density to make a comparison with the Swarm-A and GRACE-FO 
observations. The extrapolation is calculated using:

deni = den0 ∗ exp

(

−(ℎi − ℎ0) ∗ (𝑀𝑀0 ∗ 𝑔𝑔)

𝑅𝑅 ∗ 𝑇𝑇0

)

 (1)

 where, deni is the extrapolated density at the height of interest hi. den0, h0, T0, and M0 are the density, height, 
temperature, and mean molecular mass at the upper boundary. g is the gravitational acceleration and R is the 
gas constant.

5.  The coupled WAM-IPE includes two parts, which are focused on weather forecast timescales (Fuller-Rowell 
et al., 2008). The WAM is an extension of the Global Forecast System to model the upper atmospheric physics 
and chemistry. The IPE model (Maruyama et al., 2016) provides the plasma component of the atmosphere. 
The flux-tube solver is based on the Field Line Interhemispheric Plasma model and flux-tube structures 
are defined by the International Geomagnetic Reference Field. The thermospheric parameters calculated by 
WAM are fed into IPE for calculating the ionospheric responses. The space weather drivers of WAM-IPE 
include F10.7, Kp (estimated/forecast), 41-day backwards averaged F10.7 and 24 hr averaged Kp. This model 
uses the Weimer empirical ion convection model. The IMF and solar wind are used to derive the OVATION 
hemispheric power. This hemispheric power is then used to drive the TIROS model of the precipitation. The 
resolutions of the model outputs have 2° in latitude, 4° in longitude, 10 km in height. The temporal resolution 
of the output is 10 min.

6.  The WACCM-X extends the lower atmospheric component of the Community Earth System Model into the 
thermosphere, with a model top boundary between 500 and 700 km (H.-L. Liu et al., 2018). Compared to 
the TIE-GCM, it has the advantage of self-consistently resolving lower atmospheric processes and there-
fore enables a more realistic simulation of upper atmospheric variability due to lower atmospheric forcing. 
In addition, the meteorology of the troposphere and stratosphere is constrained using the specified dynam-
ics approach (Smith et al., 2017), namely, the “SD-WACCMX.” In this study, we use the empirical Heelis 
model to represent the magnetospheric energy input. The solar extreme-ultraviolet (EUV) variability and 
energy deposition scheme, including photoelectron effects, are parameterized as described in Solomon and 
Qian (2005). The model resolution is 2.5° in longitudinal direction, 1.9° in latitudinal direction and a vertical 
pressure grid resolution of 0.25 scale height. The temporal resolution of the output is 1 hr.

3. Results
3.1. Solar and Geophysical Conditions of the Geomagnetic Storm

Figure  1 shows the space environment conditions for 1–6 February 2022. Two stronger, but yet still moder-
ate, geomagnetic disturbances occurred on 3 and 4 February under consideration (yellow shaded rectangles in 
Figure 1), for which we will refer to as the first and second storm. The solar wind speed increased at 00:00 UT 
on 3 February from 400 to 580 km/s. The IMF Bz turned southward at 01:00 UT on 3 February, and reached a 
minimum value of ∼-18 nT at 09:00 UT. Correspondingly, the SYM-H index decreased, and a negative value of 
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−79 nT was reached at 11:00 UT. We can also see that the minimum Dst is −66 nT, and the maximum Kp is 5 
at this moment. On 4 February, the solar wind remained at around 500 km/s. The IMF Bz remained southward 
during the whole day, and minimum values of ∼–10 nT can be seen at 09:00 and 17:00 UT. The SYM-H index 
reached a minimum of −61 nT at 10:00 UT and −70 nT around 21:00 UT. There exists a comparable Kp value 
on 3–4 February. Note that the SYM-H varied around ∼–27 nT on 5–6 February, which means that there was a 
long-term recovery phase that lasted more than 2 days.

As quiet-time reference values, for both observations and modeling, we took the average of 1 and 2 February 
2022. Both of these days are characterized by a minor geomagnetic disturbance (Figure 1), however, they did not 
have impact on the thermosphere behavior.

Figure 1. Interplanetary magnetic field (IMF) and solar wind parameters and geomagnetic activity indices on 1–6 February 2022. From the top to the bottom are 
the solar wind velocity (km/s, 5 min) and proton number density (n/cm 3, 5 min), IMF Bz components (nT, 5 min), geomagnetic symmetric (SYM) disturbances for H 
component (nT, 5 min) and Dst (nT, 1 hr) and Kp (3 hr).



Space Weather

HE ET AL.

10.1029/2023SW003521

7 of 24

3.2. Thermosphere Mass Density Comparisons

Figure 2 shows variations of the thermosphere mass density from 1 to 6 February as observed by Swarm-A and 
GRACE-FO satellites. We also calculate neutral density from the model outputs along the satellite trajectories. 
Both satellites (blue lines) show two significant increases in the thermospheric mass density that occurred on 3–4 
February 2022, which corresponds to the minimum of the SYM-H index. The maximum neutral mass density 

Figure 2. The comparison of the simulated thermosphere mass density for the DTM2013, MSIS2.0, Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics 
Model, Multiscale Atmosphere-Geospace Environment, Whole Atmosphere Model-Ionosphere Plasmasphere Electrodynamics and SD-WACCMX with Swarm-A 
(average orbit height: ∼438 km) and Gravity Recovery and Climate Experiment Follow-On (average orbit height: ∼505 km) during the time period from 1 to 6 
February.
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during the second storm is higher than that during the first storm. For the Swarm-A, the density increased from 
∼0.8 × 10 −12 on 1 February to ∼1.5 × 10 −12 kg/m 3 around 11:00 UT during the first storm (i.e., 3 February) and to 
∼1.6 × 10 −12 kg/m 3 around 21:00 UT during the second storm (i.e., 4 February). For the GRACE-FO, the density 
increased from ∼0.3 × 10 −12 to ∼0.5 × 10 −12 kg/m 3 on 3 February and to ∼0.6 × 10 −12 kg/m 3 on 4 February. 
We also notice a small density increase on 2 February between 00:00 and 16:00 UT that corresponds to the very 
minor disturbance during this time. Similar to both observations, the two thermosphere density enhancements 
at around 11:00 on 3 February and around 21:00 UT on 4 February are captured by all six models (red lines in 
Figure 2). The enhancement on 2 February is also seen in the simulations. However, we also notice some discrep-
ancies between the model results and observations. For instance, as compared to Swarm-A, DTM2013 overes-
timates the density during the recovery phase on 5–6 February, and during the minor geomagnetic disturbance 
on 2 February. While, MSIS2.0 underestimates the thermospheric density in response to the main phases on 3–4 
February. MAGE overestimates by ∼50% the value and by ∼12 hr the duration of the thermospheric storm on 
4 February. Finally, the largest discrepancy is observed for WAM-IPE, which overestimates the density for both 
quiet and disturbed conditions. Similar discrepancies between models and observations can also be confirmed by 
the observed-to-simulation density ratio in Figure S1 in Supporting Information S1.

However, it should be noted that the absolute values calculated from satellite observations can be affected by the 
methods of density estimation. The origin of systematic offsets between thermosphere neutral density data sets 
and empirical models stems from the selection of input data combined with uncertainties in satellite aerodynamic 
modeling. An additional factor, affecting comparisons of models derived from older data sets compared with 
newer data, stems from long-term change effects. This is discussed in more detail in Doornbos (2012). On the 
other hand, physics-based models contain parameters for sub-grid processes with an associated uncertainty, such 
as the eddy-diffusion coefficient, that are sometimes tuned toward specific data sets and/or empirical models. 
The discrepancies presented above are likely the result of the varying approaches used by the model developers.

To quantitatively describe the storm-time thermosphere mass density changes, we estimate the relative variations 
of the orbit-averaged density with respect to the quiet days, Δρ/ρ, for both observations and models (Figure 3). 
Note that the orbit-averaged density is calculated over one orbital period for each time step. As a reference, 
the quiet and storm orbit-averaged densities for both observations and models are also provided in Figure S2 
in Supporting Information S1. From Figure 3, for Swarm-A at an average altitude of ∼438 km and 09/21 LT 
sector, the relative neutral mass density reached 90% at 11:00 UT on 3 February (the gray line in Figure 3), and 
∼110% at 21:00 UT on 4 February. GRACE-FO measurements at the average altitude of 505 km and in 06/18 LT 
sector showed ∼90% and ∼120% increases in neutral density for the first and second storms, respectively. For 
the simulation results (other colored lines in Figure 3) relative to Swarm-A on the first storm days (3 February), 
DTM2013 (the magenta line), CTIPe (the blue line), MAGE (the cyan line), and WAM-IPE (the red line) are 
more consistent with the observations. However, MSIS2.0 (the green line) and SD-WACCMX (the black line) 
underestimate the thermospheric density by ∼50%. For the second disturbance on 4 February, CTIPe is much 
closer to the observations than other models. Meanwhile, we observe ∼30% underestimation for DTM2013 and 
WAM-IPE, ∼50%–70% underestimation for MSIS2.0 and SD-WACCMX models, and ∼10% overestimation for 
MAGE. During the recovery phase on 5 February, the density values of DTM2013, MSIS2.0, WAM-IPE, and 
SD-WACCMX are close to the observations, while CTIPe and the MAGE show ∼30% overestimation. On 6 
February, the ∼20% underestimation for both the WAM-IPE and the MAGE can be found as compared to the 
observations. The results are quite similar for the GRACE-FO observations (the bottom of Figure 3). Overall, we 
conclude that both empirical and theoretical models captured the enhanced storm-time density changes; however, 
different models exhibit positive and/or negative biases at different phases of this storm event.

To investigate the thermosphere mass density behavior due to the 3–4 February magnetic storm in more detail, 
we analyze the latitude-universal time (UT) distribution of the density enhancement (Figures 4–7). Note that 
we compare results measured and simulated at different local times, that is, ∼09/21 LT for Swarm-A (Figures 4 
and 5) and ∼06/18 LT for GRACE-FO (Figures 6 and 7). An evident pattern is the hemispheric asymmetry, 
that is, a larger density enhancement existed in the northern hemisphere relative to the southern hemisphere. 
Specifically, during the main phase of the first storm on 3 February, the density from Swarm-A (the top panels 
of Figure 4) starts to increase at high latitudes of the northern hemisphere from 06:00 UT, and reaches a maxi-
mum of 150% at 11:00 UT. The enhancement propagates into the low latitudes around 13:00 UT, and lasts until 
∼21:00 UT. With the second storm development, the neutral density starts to increase at high and mid-latitudes in 
the northern hemisphere at 08:00 UT on 4 February, and at ∼12:00 UT in the southern hemisphere. The maximum 
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enhancement of 150% is reached between 16:00 and 20:00 UT in both the northern and the southern hemispheres. 
From ∼20:00 UT, the density enhancement drops to 30%–60% in both hemispheres, and it lasts during the next 
day at all latitudes. On 6 February, we observe 10%–30% enhancement at high latitudes, while at low and middle 
latitudes the neutral mass density returned to undisturbed levels. The simulation results in the 09:00 LT sector 
show quite similar patterns (Figure 4). The 3–4 February storm effects are also seen in the results of all models. 
However, MSIS2.0 and SD-WACCMX show an enhancement of the neutral mass density at high latitudes of the 
northern hemisphere, and only a weak disturbance propagates to the middle and low latitudes. Additionally, in 
MSIS2.0, the amplitude of the high-latitude neutral density disturbance is underestimated. DTM2013 reproduce 
the effects of both storms, but the amplitude of the thermospheric disturbance, especially at middle and low 
latitudes, is underestimated. In terms of the neutral density disturbance propagation from high latitudes to low 
latitudes, CTIPe, WAM-IPE, and MAGE show better agreement with observations at the altitude of Swarm-A 
and in the 09:00 LT sector. The recovery phase (5–6 February) reproduced by DTM2013 and WAM-IPE agree 
the most with the observations. CTIPe and MAGE show an obvious overestimation of the amplitude at all lati-
tudes, especially on 5 February. In the 21:00 LT sector (Figure 5), the thermospheric storm effects are stronger 
and longer lasting than in the morning sector. They are underestimated by the empirical MSIS2.0 model, and by 
WAM-IPE and SD-WACCMX models. The agreement with observations is better for CTIPe and MAGE models; 
however, these models overestimate the amplitude of the thermosphere disturbance.

The GRACE-FO observations at 483.8 and 532.7 km and in 06/18 LT depict smaller-scale thermospheric disturbances 
structure due to the storm (Figures 6 and 7), because the resolution of the accelerometer-derived data set is higher than 

Figure 3. The relative changes comparison of the orbit averaged thermosphere mass density from simulations with the 
observed one from Swarm-A (average orbit height: ∼438 km) (top panel) and Gravity Recovery and Climate Experiment 
Follow-On (average orbit height: ∼505 km) (bottom panel) during the days from 3 to 6 February. The gray line indicates the 
observations. The magenta, green, blue, cyan, red, and black lines indicate simulation from DTM2013, MSIS2.0, Coupled 
Thermosphere Ionosphere Plasmasphere Electrodynamics Model, Multiscale Atmosphere-Geospace Environment, Whole 
Atmosphere Model-Ionosphere Plasmasphere Electrodynamics, and SD-WACCMX, respectively.
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the GNSS-derived one. Similar to Swarm-A observations, we observe up to 150% density enhancement from the high 
to low latitudes during the storms on 3–4 February (the top panel of Figure 6). During both storms, the enhancements 
reach low latitudes due to large-scale TAD. The density enhancements are first seen at high latitudes in both the 
northern and southern hemisphere and then propagate to low latitude and equatorial regions after ∼4 hr. DTM2013 
predicts a smoothed density enhancement extending to the low latitudes from the high latitudes. The smooth enhance-
ment in MSIS2.0 is mainly confined to the high latitudes, hardly extending to the low latitudes. The numerical models 

Figure 4. The latitude-universal time distribution of the relative changes comparison of the orbit thermosphere mass density from observed one around 09 local 
time provided by the Swarm-A with the simulated results from different models during the days of 3–6 February. From the top to bottom panels indicate Swarm-A, 
DTM2013, MSIS2.0, Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model, Multiscale Atmosphere-Geospace Environment, Whole Atmosphere 
Model-Ionosphere Plasmasphere Electrodynamics, and SD-WACCMX, respectively.
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can reproduce small-scale structures of the thermospheric response. CTIPe and MAGE agree best with observed 
densities. WAM-IPE underestimates the density enhancement in all latitudes on 3–4 February. SD-WACCMX shows 
a stronger enhancement at high latitudes of the northern hemisphere, and only a weak disturbance descends to the 
middle and low latitudes. A similar pattern can also be seen in the 18:00 LT sector (Figure 7). However, a smaller 
neutral density enhancement is seen around the low-latitude and equator regions on both 3 and 4 February. It suggests 
that thermospheric storm effects are weaker at 18:00 LT with respect to the 06:00 LT observations.

To study the response in the lower thermosphere, we analyze neutral temperatures (Tn) from GOLD disk meas-
urements. Figure 8a presents the relative Tn changes (i.e., GOLD_Tndisk) at fixed 15:00 UT with respect to 

Figure 5. Same as Figure 4, but for the 21 local time.
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the quiet day. Figure 8b shows relative changes in the synthetic temperature from all empirical and theoretical 
simulations during the days of 2–6 February. From the GOLD observations on 3 February, it is evident that a 
larger temperature enhancement occurred at higher latitudes in the northern hemisphere (∼30%–40%), and there 
was no obvious enhancement at lower latitudes, which was around ∼10%–15% in middle latitudes in the southern 
hemisphere in the American sector on 3 February. An overall larger temperature enhancement from the higher 
to lower latitudes for both the northern and southern hemispheres can be seen on 4 February. The temperature 

Figure 6. The latitude-universal time distribution of the relative changes comparison of the orbit thermosphere mass density from the early morning (06 local time) 
observed one provided by the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) with the simulated results from different models during the days of 
3–6 February. From the top to bottom panels indicate GRACE-FO, DTM2013, MSIS2.0, Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model, 
Multiscale Atmosphere-Geospace Environment, Whole Atmosphere Model-Ionosphere Plasmasphere Electrodynamics, and SD-WACCMX, respectively.
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enhancement then decreased on 5–6 February, but it remained around 10% in the middle and low latitudes in the 
American sector. The observed GOLD_Tndisk results demonstrate that the neutral temperature changed in the 
lower altitudes due to this storm event, which is consistent with the observed mass density results. The simulations 
captured the disturbed lower thermosphere temperature during the storm period. However, the synthetic temper-
atures from the simulation result show clear deviations from the observations in both magnitudes and spatial 
patterns. The temperature enhancement of DTM2013 is underestimated (∼5%) during the entire time period, and 
it only occurred at higher latitudes. A similar phenomenon can also be seen in MSIS2.0, that is, the underestima-
tion (∼5%) is confined in the higher latitudes. For CTIPe, it can generally represent the temperature changes in 

Figure 7. Same as Figure 6, but for the 18 local time.
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Figure 8. (a) The observed Global-scale Observations of the Limb and Disk neutral temperature enhancement at 15:00 universal time and (b) The synthetic 
neutral temperature enhancement from simulations during the days of 3–6 February. From the top to bottom panels of (b) indicate DTM2013, MSIS2.0, Coupled 
Thermosphere Ionosphere Plasmasphere Electrodynamics Model, Multiscale Atmosphere-Geospace Environment, Whole Atmosphere Model-Ionosphere Plasmasphere 
Electrodynamics, and SD-WACCMX, respectively.
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higher and middle latitudes around the American sector during the selected period. However, it slightly under-
estimates the enhancement relative to the observations. For example, in CTIPe, the enhancement in the northern 
high latitudes is around ∼25%, and it is ∼10% in the southern middle latitudes on 3 February. The underestima-
tion of the  temperature enhancement persists on 4–6 February, especially for the mid- and lower-latitudes in the 
American sector. For MAGE, it better represents the temperature changes during the selected period. However, 
an overall slight overestimation can be found during the storm's main phase (e.g., 3–4 February). For example, a 
larger temperature enhancement occurred in the northern higher latitudes on 4 February. WAM-IPE shows a real-
istic temperature enhancement pattern on 3 February, however, it underestimates the temperature changes at the 
selected times. SD-WACCMX reveals a smaller temperature enhancement value relative to the results observed 
by GOLD_Tndisk at all latitudes from 2 to 6 February.

We notice that before reentering the atmosphere, SpaceX initially launched and a short time later deployed 49 
Starlink satellites at an orbit altitude between 210 and 320 km. The thermosphere mass density enhancement 
around 200 and 300 km should be investigated in detail. Figure 9 further gives the simulated zonal mean value of 
the thermosphere mass density enhancement at a height of 200 km during the days of 3–6 February. The reference 
day is again chosen as 1 and 2 February. With regard to the value of global mean density enhancement, DTM2013 
predicts that the maximum density enhancement can be up to ∼30%–35% on both 3 and 4 February and ∼15% 
on 5–6 February. For MSIS2.0, it shows ∼10%–15% enhancement during the two storm days, while no obvious 
enhancement is shown in the recovery phase. For CTIPe, enhancements of ∼20% occurred on 3 February, ∼30% 
on 4 February, and ∼10%–20% on 5–6 February. For MAGE, it shows ∼30% density enhancement occurred on 
3 February in the middle and low latitudes, with enhancements of ∼40% on 4 February, and ∼10%–20% on 5–6 
February. For WAM-IPE, it shows ∼10%–15% density enhancement occurred on 3–4 February, and almost no 
obvious enhancement is shown on 5–6 February. For the SD-WACCMX, only ∼10% density enhancement is seen 
on 4 February. It seems that there exists a reversed hemisphere asymmetry at 200 km compared to the higher alti-
tudes (Figures 4–7), that is, the larger density enhancements are visible in the Southern Hemisphere at 200 km. 
The detailed reason for this will be given in discussion section.

The simulated zonal mean value of the thermosphere mass density enhancement at the altitude of 300 km is also 
shown in Figure 10. Similar to the results in the upper thermosphere (e.g., Figure 4), the majority of simulations 
show that two obvious density enhancements in the lower thermosphere occurred on 3–4 February, and a larger 
enhancement existed on 4 February. During the two storm days, the global averaged maximum density enhance-
ment of DTM2013 can reach ∼50% and ∼45% on 3 and 4 February, respectively. They are ∼20% and ∼25% for 
MSIS2.0, ∼41% and ∼51% for CTIPe, ∼57% and ∼75% for MAGE, ∼40% and ∼40% for WAM-IPE, and ∼15% 
and ∼23% for SD-WACCMX.

Based on the thermosphere mass density comparison, during the two storms main phases, better density changes can 
be found in the theoretical models CTIPe and MAGE (seen in Figure 2). Meanwhile, according to the GOLD temper-
ature comparison, better temperature changes can be found in the two theoretical models for the CTIPe and the 
MAGE, with a slight underestimation and overestimation for CTIPe and the MAGE, respectively (seen in Figure 8). 
Thus, we can estimate that the global averaged maximum density enhancement based on the average value of both 
the CTIPe and the MAGE models, which can be up to ∼35% at 200 and ∼60% at 300 km during the two storm days.

4. Discussion
The loss of 38 Starlink satellites in early February 2022 due to a geomagnetic storm is the perfect demonstra-
tion of the importance of reliable space weather forecasts. While space agencies and space weather prediction 
centers issued a warning of the possibility of a minor storm, its consequences on the orbits of the very low 
perigee Starlink satellites were apparently severely underestimated. The February 2022 storm was of a moderate 
intensity (the minimum SYM-H excursion of only −79 nT, the minimum Dst of −66 nT, and the maximum Kp 
of 5), and comprised two sub-events. Our results show that the thermospheric neutral mass density increased 
by 120%–150% at the altitudes of 400–500 km, and by 35%–60% at the orbital altitude of the Starlink satellites 
(210–320 km). Such effects are quite moderate as compared to previous observations for more intensive storms 
that can cause up to 900%–1100% increases in the thermospheric density (e.g., Astafyeva et al., 2017, 2020; Lei 
et al., 2011; Liu & Lühr, 2005) and, therefore, a significant increase in the atmospheric drag.

Both empirical and theoretical models captured the upper and lower thermospheric response to this storm; 
however, we found up to 70% discrepancy in the results of different models during different phases of this 
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storm. For the empirical models, both MSIS2.0 and DTM2013 use the same Bates temperature profile and a 
physical constraint of diffusive equilibrium for the vertical structure of the thermosphere (Emmert, 2015). The 
temperature changes are very similar, but the mass density enhancement variations show large differences in both 
upper and lower thermosphere. Since, in addition to the temperature, the density at a fixed height is dependent on 
the composition profile, the differences in the main thermosphere constituents and their response to geomagnetic 

Figure 9. The simulated zonal mean value of the thermosphere mass density enhancement at a height of 200 km during the days of 03–06 February. From the 
top to bottom panels indicate DTM2013, MSIS2.0, Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model, Multiscale Atmosphere-Geospace 
Environment, Whole Atmosphere Model-Ionosphere Plasmasphere Electrodynamics, and SD-WACCMX, respectively.
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activity could be one possible explanation of the different response of the models. Another possible explanation 
is likely related to the assimilation of more recent total density data for the DTM2013 model (Bruinsma, 2015), 
especially the GOCE data at low altitudes (∼224 km).

Generally, the Joule heating is the predominant driver of the increased temperatures in the high latitudes 
during the storm-time period. The time-dependent evolution of high-latitude Joule heating is adopted in the 
physics-based models, which is most calculated from the empirical Heelis and Weimer models (Heelis et al., 1982; 

Figure 10. Same as Figure 9, but for 300 km.
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Weimer, 2005). However, for the empirical models, they are usually driven by the scalar geomagnetic indices 
(e.g., 3 hr Kp and Ap indices) to describe the varying heating distributions (Fedrizzi et al., 2012). Thus, both 
empirical models in this study poorly capture the inherent time dependence of the global atmospheric struc-
ture during geomagnetic activity. In addition, we note that the performance of the models, that is, the CTIPe, 
WAM-IPE and the MAGE, is better than the SD-WACCMX one, at least during the storm's main phase (seen 
in Figure 2). T.-W. Fang et al.  (2022) indicated that WAM-IPE densities at perigee (200–250 km) agree well 
with the onboard calculated neutral density proxy provided by the Starlink satellites. According to T.-W. Fang 
et al. (2022), the neutral density proxy is obtained by dividing the drag acceleration by drag coefficient along the 
orbit for each satellite, which should be linearly proportional to the neutral density. Lin et al. (2022) compared 
the high latitude convection patterns between MAGE and standalone TIE-GCM during this storm, and showed 
that the TIE-GCM convection is generally weaker than DMSP measurements, while MAGE simulation results 
are more consistent with DMSP data. Besides, Zhu et al. (2022) also indicated the importance of accurate soft 
electron precipitation specifications in the whole auroral zone to improve the F-region neutral mass density 
estimations by the Global Ionosphere Thermosphere Model. The accurate specification of the energy input from 
the magnetosphere is crucial. Capturing the variabilities of electric field and electron precipitation through either 
coupled magnetosphere-ionosphere-thermosphere modeling or data-constrained modeling (e.g., AMIE) is there-
fore important to better simulate the thermosphere storm's response.

Figure  11 shows that the simulated integrated high latitude Joule heating rate poleward of 45° in both the 
northern hemisphere and southern hemisphere from three different physical models, that is, CTIPe, MAGE, 
and SD-WACCMX. Note that the WAM-IPE does not presently support output of its Joule heating calcula-
tions. For the northern hemisphere, CTIPe and MAGE show a larger Joule heating than other models during the 
whole period of this storm. Both values are close to each other on 3 February. However, a larger Joule heating 
occurred in the MAGE than that in the CTIPe around 06:00–14:00 UT on 4 February in both hemispheres. This 
is consistent with the bigger thermosphere mass density enhancement shown in the MAGE on 4 February. The 
SD-WACCMX shows a smallest Joule heating value, that is, the smallest high latitude energy input, and therefore 
shows a weaker thermosphere mass density enhancement during two main phases of this storm event. For the 
southern hemisphere, the same conclusion can also be conducted, while there exists a larger Joule heating than 
that in the northern hemisphere.

Besides the absolute value differences, we notice, for both observations and simulations, stronger density 
enhancements at 06/21 LT than other LT sectors. Such dependence can be explained by the LT asymmetry of the 
high-latitude input. The energy injection is the largest along the auroral oval, that is, it is shifted toward the night-
side hemisphere. Therefore, the expansion of the upper atmosphere disturbance from the high latitude  toward 
middle latitudes is essentially restricted to the midnight/early morning hours (Fuller-Rowell et  al.,  1996; 
Prölss, 1976, 1980). This can be confirmed by Figure 12 showing the simulated height integrated high latitude 
Joule heating rate in the northern hemisphere from CTIPe, MAGE, SD-WACCMX at 10:00 UT on 3 and 4 Febru-
ary. The selected UT corresponds to the minimum value of the IMF Bz (Figure 1). The simulated height integrated 
Joule heating changes during the whole days of 3 and 4 February are also given in Figures S4–S9 in Supporting 
Information S1. Even though the simulated absolute values differ, a larger Joule heating high-latitude energy 
input for all chosen models around the midnight/early morning hours.

Compared with other models, the SD-WACCMX can provide a more realistic representation of variability coming 
from the lower atmosphere. However, during the main phase of this storm, the SD-WACCMX has a worse perfor-
mance than other physics-based models utilized in the study. The reason is that the density variation at LEO is 
mainly driven by geomagnetic and solar forcing. However, the values of the SD-WACCMX show much closer to 
that of both the Swarm and the GRACE-FO during the recovery phase (seen in Figure 3). This could be contrib-
uted to the storm-induced chemistry and dynamics changes of nitric oxide density, which will be investigated in 
a further study. This also suggests that a realistic lower atmosphere is also important for specifying thermosphere 
mass density even during the storm period. Even though this effect is not investigated in detail in this paper, 
according to Yue et al. (2022), at LEO altitudes, during solar minimum and geomagnetic quiet days, the impact 
from the lower atmosphere is much smaller compared to solar and geomagnetic effects, but is not negligible 
(5%–10% vs. 20%). Maute et al. (2022) showed that more realistic lower atmosphere variations improve espe-
cially the northern hemisphere neutral density by up to 15% compared to using a climatological representation 
of the lower atmosphere forcing. In terms of the thermosphere mass density enhancement during storm's main 
phase, the performance of SD-WACCMX is not as good as the other models most likely due to deficiencies in the 
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Heelis empirical model. This again highlights the importance of accurate specification of the high latitude energy 
input for coupled ionosphere and thermosphere system. This also suggests that the Heelis model is less accurate 
to specify the high latitudes energy input at least during this moderate storm period.

The thermospheric behavior during the 3–4 February 2022 storm was hemispherically asymmetric around satel-
lite heights as seen in Figures  4–7, that is, the storm-time density enhancement in the northern hemisphere 
(winter) is stronger than in the southern hemisphere (summer) in the upper thermosphere (i.e., >400 km). While 
in the lower thermosphere (e.g., 200 km), as seen in Figure 9, the asymmetry is less pronounced or even reversed 
on 4 February. Physically, neutral mass density changes at a fixed altitude are generally influenced by scale height 
changes that are partly caused by storm-time neutral temperature enhancements due to the heating and partly by 
changes in the mean molecular weight due to winds (Lei et al., 2010). To investigate the detailed reason, Figure 13 
gives the mean molecular mass and temperature enhancement from MAGE during the storm events in the upper 
(400 km) and lower thermosphere (200 km), respectively. A larger temperature enhancement still occurred in 
the northern hemisphere at 200 and 400 km during this storm period. For the upper thermosphere, there exists a 
comparable mean molecular mass enhancement in both the northern and southern hemispheres. Thus, there is a 
stronger storm-time density enhancement at 400 km in the northern hemisphere (winter) compared to the south-
ern hemisphere (summer). However, for the lower thermosphere, a stronger mean molecular weight enhancement 

Figure 11. The integrated high latitude Joule heating rate poleward of 45° in both the northern hemisphere (the top 
panel) and southern hemisphere (the bottom panel) simulated by the Coupled Thermosphere Ionosphere Plasmasphere 
Electrodynamics Model (red), Multiscale Atmosphere-Geospace Environment (green), and SD-WACCMX (dark).
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occurred in the northern hemisphere especially on 4 February. Those increases in mean molecular weight offset 
the effects of neutral temperature increases. Thus, we found a disappeared asymmetry or even a reversed asym-
metry at 200 km. As a reference, Figure S3 in Supporting Information S1 also shows the background values of the 
thermosphere mass density, neutral temperature, and mean molecular mass for calculation of Figure 13.

The GOLD neutral temperature observations provide insight into the storm effects on the lower thermosphere. 
This type of observation shows that even during a moderate geomagnetic storm the lower thermospheric condi-
tions can be perturbed significantly (e.g., 30%–40% seen in Figure 8). Previous studies have demonstrated that 
auroral heating effects on temperature, which include both particle precipitation and Joule heating, can pene-
trate down to the altitudes of ∼105 km at high latitudes during storms (X. Fang et al., 2008; Xu et al., 2013). 
Joule heating values (Figure 11) suggest that a larger Joule heating can cause more obvious neutral temperature 

Figure 12. The height-integrated Joule heating in Northern Hemisphere simulated by the Coupled Thermosphere Ionosphere 
Plasmasphere Electrodynamics Model, Multiscale Atmosphere-Geospace Environment, and SD-WACCMX at 10:00 universal 
time on 03 February (the left panels) and on 04 February (the right panels). The patterns are plotted in latitude versus local 
time coordinates. The white dashed line represents the 45° latitude boundary in Northern Hemisphere.
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enhancement in the lower thermosphere especially during the storm's main phase. Due to the exponential decrease 
of neutral density with altitude, the direct influence of Joule heating on temperature is largest in the F region. 
Deng et al. (2011) found that the energy deposited at high altitudes has a stronger influence on the neutral density 
variation at F region altitudes than the energy deposited at low altitudes. Their simulations show that heating 
below 150 km can cause a large buoyancy acceleration at 300 km. It mainly brings some temporal variation to the 
vertical velocity. However, the heating at high altitudes sets up a large vertical wind, which is the primary source 
for a large increase of neutral density at 300 km and higher altitudes.

5. Conclusions
In this work, we used observations and simulations of the thermosphere mass density to perform a detailed inves-
tigation of the thermospheric conditions during the moderate geomagnetic storm of 3–4 February 2022 that was 
responsible for the loss of 38 Starlink satellites.

Data from Swarm-A (∼438 km) and GRACE-FO (∼505 km) showed that the maximum thermosphere mass 
density enhancement due to this storm was ∼110% for Swarm-A observations in the ∼09/21 LT sector and ∼120% 
for GRACE-FO observations in 06/18 LT. The simulations suggest that at altitudes of 200–300 km the global 
averaged density enhanced up to ∼35%–60% during this storm event. Although this enhancement is modest when 
compared to other more intense storms, it was enough to deorbit 38 out of 49 Starlink satellites.

The observed storm-time enhancements extended to middle and low latitudes, and were stronger in the northern 
hemisphere. The enhancements show a LT difference, that is, a stronger one at 21:00 LT for the Swarm-A, and 
06:00 LT for GRACE-FO than in the other LT sectors. Both empirical and theoretical models captured the upper 
and lower thermospheric response to this storm; however, we found up to 70% discrepancy in the results of differ-
ent models during different phases of this storm.

Figure 13. The temperature and mean molecular mass enhancement from Multiscale Atmosphere-Geospace Environment at 400 (the top panels) and 200 km (the 
bottom panels) during the time period from 3 to 6 February.
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This moderate geomagnetic storm also caused a larger (∼30%–40%) neutral temperature enhancement in the 
lower thermosphere as seen in GOLD_Tndisk observations. The simulations show that the magnitude of the 
temperature enhancement is highly correlated with the Joule heating during the storm's main phase.

This study provides a comprehensive investigation of the whole thermosphere conditions during this moderate 
storm event. It shows the advantage of the multi-instrumental observations to simultaneously obtain insight into 
the atmosphere response to one particular storm event. Moreover, this work highlights the importance of both the 
empirical and theoretical models to better understand the complex storm processes in the global-scale geospace 
environment, and to satisfy a growing need in the space community to improve thermosphere density predictions. 
Furthermore, this study shows that even a moderate storm can significantly change the thermosphere conditions 
in upper and lower altitudes, and thereby cause a risk to the LEO satellites. Currently, with the greatly increasing 
human space activities, space weather events should be paid much attention to better alleviate the financial loss.

Data Availability Statement
The Swarm-A and GRACE-FO thermosphere mass density data set can be downloaded from the ESA's Swarm 
website, https://swarm-diss.eo.esa.int. The GOLD level-2 disk temperatures can be downloaded from the GOLD 
Science Data Center, https://gold.cs.ucf.edu. The simulation results are available for free download from Open 
Science Framework (He, 2023).
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