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1. Abstract 

This thesis compares various model optimization techniques, specifically 

pruning, clustering, and quantization. The objective is to evaluate the impact of 

the techniques on model size and performance. We trained a base LSTM 

model, what is called a “teacher model” on an emotion classification dataset 

and then applied pruning and clustering to create two additional optimized 

models. These models were subsequently quantized to further reduce their 

sizes. 

This work highlights the trade-offs between the model compression 

techniques and their impact on model performance, providing valuable 

insights for deploying efficient models resource-constrained environments. 

 

2. Introduction 

This thesis is a part of my education in AI & ML. The project selected for this 

thesis is a continuation of the deep learning course and focuses on optimizing 

machine learning models. The primary aim is to explore various model 

compression techniques to make them more efficient for deployment in 

resource-constrained environments. 

The project is significant as it addresses practical challenges associated with 

deploying large machine learning models in real-world scenarios, such as 

mobile devices, smart watches, etc., where computational resources are 

limited. By optimizing these models, we aim to maintain high accuracy while 

significantly reducing their size, thus making them more feasible for various 

applications. 

In the following sections, the methodology, results, and analysis of the project 

are detailed, providing a comprehensive overview of the techniques used and 

their effectiveness. This introduction sets the stage for understanding the 

importance and scope of the work done in this thesis. 

 

3. Purpose and Goals 

Purpose 



   
 

   
 

This thesis explores and implements model optimization techniques for 

machine learning models, specifically focusing on compression methods such 

as pruning, clustering, and quantization. The goal is to reduce the size of the 

models while maintaining or improving their accuracy. This optimization is 

crucial for deploying models in environments with limited computational 

resources, such as mobile devices. By leveraging these techniques, the project 

aims to make machine learning models more efficient and feasible for real-

world applications, thereby enhancing their usability and performance in 

practical scenarios. 

 

Goals 

1. Implement and compare model optimization techniques: 

• Apply pruning, clustering, and quantization to a baseline LSTM model. 

• Evaluate the effectiveness of each technique in reducing model size and 

maintaining accuracy. 

2. Maintain high model performance: 

• Ensure that the optimized models achieve high training and validation 

accuracy. 

• Compare the performance of the optimized models against the baseline 

model to assess the impact of each optimization technique. 

3. Develop a comprehensive analysis: 

• Provide a detailed analysis of the results, including visualizations to 

compare model sizes and accuracies. 

• Discuss the trade-offs between model size and performance for each 

optimization technique. 

4. Practical applications: 

• Highlight the benefits of using optimized models in real-world 

scenarios. 

These goals aim to provide a thorough understanding of model optimization 

techniques and their practical applications, contributing valuable insights to 

machine learning. 

 

4. Method 



   
 

   
 

In this section, we will detail the methodologies, tools, and decisions made 

throughout the project, explaining the technical stack, the logic behind the 

choices, and the workflow followed. 

Programming language and libraries 

Programming language: 

• Python: Python was chosen as the main programming language for this 

project due to its extensive support for machine learning and data science 

libraries, ease of use, and readability. Its large community and wealth of 

resources make it an ideal choice. The availability of numerous pre-built 

libraries and frameworks significantly accelerates development and 

experimentation. 

 

Libraries:  

• TensorFlow and Keras: These were used for building, training, and 

optimizing the neural network models. TensorFlow provides robust support 

for model optimization techniques such as pruning and quantization, while 

Keras offers a high-level API for easy model creation. TensorFlow's 

integration with Keras simplifies the process of model development, 

making it possible to prototype and deploy models efficiently. 

• TensorFlow Model Optimization Toolkit (TFMOT): TFMOT was utilized for 

implementing pruning and clustering techniques. It integrates seamlessly 

with TensorFlow, providing a straightforward way to apply these 

optimizations. This toolkit allows for significant reductions in model size and 

improvements in inference speed without extensive modifications to the 

original model code. 

• Scikit-learn: Used for preprocessing tasks such as data splitting and 

encoding labels. Scikit-Learn's comprehensive suite of tools for data 

preparation and evaluation complements TensorFlow's capabilities, 

ensuring that the data fed into the models is clean and well-structured. 

• Pandas: Utilized for data manipulation and preprocessing. Pandas is 

indispensable for handling large datasets and performing complex 

operations with ease, enabling efficient data cleaning and transformation. 

• Matplotlib and Seaborn: Employed for visualizing the results and 

comparing model performance. These libraries provide a wide array of 

plotting functions that help in understanding the data and the model 



   
 

   
 

outcomes better. Visualization is crucial for communicating the 

effectiveness of different optimization techniques. 

 

Data and preprocessing 

• Dataset: The dataset used in this project is the same as the one used in the 

previous deep learning course project, which is “emotions.csv”. It contains text 

data with corresponding labels. Reusing this dataset ensures consistency in 

evaluating the improvements brought by the optimization techniques applied. 

 

Preprocessing techniques 

• Tokenization and Padding: The text data was tokenized and padded to ensure 

uniform input size for the neural network. Tokenization involves converting text 

into a sequence of integers, where each integer represents a unique word. 

Padding adjusts the sequences to a common length, which is necessary for 

batch processing in neural networks. 

• Label Encoding: Labels were encoded using one-hot encoding to facilitate 

multi-class classification. One-hot encoding transforms categorical labels into a 

binary matrix representation, which is suitable for the output layer of a neural 

network. 

 

Model Architecture 

The model architecture used in this project is an LSTM (Long Short-Term Memory) 

network, chosen for its effectiveness in handling sequential data. LSTM networks are 

particularly well-suited for tasks involving time-series data or text, where maintaining 

context over long sequences is essential. 

 

Layers: 

• Embedding Layer: Converts input text data into dense vectors of fixed size. 

This layer learns a representation of the input text that captures semantic 

similarities between words. 

• LSTM Layer: Processes the sequential data, capturing dependencies and 

patterns in the input sequences. LSTMs can learn long-term dependencies, 

making them ideal for tasks like sentiment analysis and language modeling. 



   
 

   
 

• Dropout Layer: Prevents overfitting by randomly dropping a fraction of the 

input units during training. Dropout is a regularization technique that improves 

the model's generalization ability. 

• Dense Layer: Produces the final output with a softmax activation function for 

multi-class classification. The softmax function converts the logits into 

probabilities, allowing for the prediction of the most likely class. 

 

Model Optimization Techniques 

Pruning: 

• Pruning: Pruning reduces the number of parameters in the neural network 

by removing less important weights, thus reducing model size and 

potentially improving inference speed. Pruning can be applied in a 

structured or unstructured manner, with structured pruning removing entire 

neurons or channels, and unstructured pruning removing individual 

weights. 

• Implementation: TensorFlow's prune_low_magnitude function from TFMOT 

was used to apply pruning. This function identifies and removes weights 

with magnitudes below a certain threshold, effectively simplifying the 

network. 

 

Clustering: 

 

• Clustering: Clustering reduces the number of unique weight values in the 

model, which can lead to better compression. By grouping weights into 

clusters and sharing the same value among clustered weights, the model 

becomes more efficient. 

• Implementation: TensorFlow's cluster_weights function from TFMOT was 

utilized for clustering. This technique is particularly useful when deploying 

models on hardware with limited memory, as it reduces the storage 

requirements. 

 

Quantization 

 

• Quantization: Quantization converts the model weights from floating-point 

to lower precision, reducing the model size and improving performance on 

hardware with limited resources. Quantization can be applied during 



   
 

   
 

training (quantization-aware training) or after training (post-training 

quantization). 

• Implementation: TensorFlow Lite's TFLiteConverter was used to quantize 

the models. TensorFlow Lite is designed for deploying models on mobile 

and embedded devices, providing tools to optimize models for these 

environments. 

 

Workflow and project management 

Workflow: 

• The project was structured in phases, starting with data preprocessing, 

followed by model building, training, optimization, and finally, evaluation. Each 

phase had specific goals and deliverables, ensuring a systematic approach to 

the project. 

• Regular reviews and iterations were conducted to ensure the quality and 

accuracy of the models. This iterative process allowed for continuous 

improvements and adjustments based on the results obtained. 

 

Project management: 

• Individual Work: This project was conducted independently, allowing for 

flexible scheduling and adaptation of methods to fit the project's needs. 

• Agile Methodology: The project followed an Agile approach with iterative 

development and frequent evaluations. Agile principles emphasize flexibility, 

iterative progress, and continuous feedback, making them well-suited for 

research and development projects. 

• Sprint Planning: Weekly sprints were planned, with specific goals and 

deliverables for each sprint. Sprints allowed for focused work on various 

aspects of the project, ensuring steady progress and the ability to adapt to new 

insights or challenges. 

• Progress Tracking: Regular progress tracking was maintained to ensure 

alignment with project goals and timelines. Tools such as personal task lists 

were used to manage tasks and track the project's status. 

 

Decision Rationale 

• Why Python and TensorFlow/Keras? 



   
 

   
 

Python's extensive ecosystem and ease of use make it ideal for rapid 

prototyping and experimentation. The language's simplicity and readability 

facilitate collaboration among team members with varying levels of 

programming expertise. 

TensorFlow and Keras offer powerful tools for model building and 

optimization, with extensive documentation and community support. Their 

flexibility and performance make them suitable for both research and 

production environments. 

 

• Why Pruning, Clustering, and Quantization? 

These techniques were chosen for their proven effectiveness in reducing 

model size and maintaining accuracy, making them suitable for deployment in 

resource-constrained environments. The ability to deploy smaller, efficient 

models on edge devices opens new possibilities for real-time applications. 

 

These methodologies and tools were carefully chosen to ensure the project's 

success, providing a robust framework for developing and optimizing the 

machine learning models. The combination of optimization techniques and a 

systematic project management approach ensured that the thesis's goals were 

met effectively. 

 

5. Results and Analysis 

Results 

The primary goal of this thesis was to compare the effectiveness of different 

model compression techniques, specifically pruning and clustering, on a 

recurrent neural network model trained on text data. The project continued 

from a previous course, utilizing the same dataset, preprocessing techniques, 

and model architecture. 

The dataset used for this project consisted of labeled text data, which was 

preprocessed and tokenized to be fed into the model. The base model, an 

LSTM (Long Short-Term Memory) network, was trained on this data, and then 

subjected to two different compression techniques: pruning and clustering. 



   
 

   
 

To compare the models effectively, the following metrics were considered: 

• Model size (KB) 

• Training accuracy 

• Validation accuracy 

• Test accuracy after quantization 

Base Model (Teacher Model) 

• Size: 4075.13 KB 

• Training Accuracy: 99.34% 

• Validation Accuracy: 90.60% 

Pruned Model 

• Size: 1365.81 KB 

• Training Accuracy: 99.32% 

• Validation Accuracy: 90.17% 

Clustered Model 

• Size: 1365.78 KB 

• Training Accuracy: 98.29% 

• Validation Accuracy: 90.03% 

Quantized Models' Test Accuracy 

• Teacher Model: 91.53% 

• Pruned Teacher Model: 91.13% 

• Clustered Teacher Model: 91.50% 

These results show that both pruning and clustering significantly reduced the 

model size while maintaining a high level of accuracy. 

To visually represent these findings, we include the following plots: 

• Model Sizes - A bar chart comparing the sizes of the three models. 

• Training Accuracies - A bar chart showing the training accuracies of the 

three models. 

• Validation Accuracies - A bar chart displaying the validation accuracies. 

• Quantized Models' Test Accuracies - A bar chart comparing the test 

accuracies of the quantized models. 

 



   
 

   
 

 

 

Analysis 

The analysis focuses on the effectiveness of the compression techniques in 

achieving the project goals. 

Achieving Project Goals  

The project successfully met its primary objectives: 

• Model Size Reduction: Both pruning and clustering reduced the model size 

by approximately 66%, which is a significant decrease that makes the 

models more suitable for deployment in resource-constrained 

environments. 



   
 

   
 

• Maintaining Accuracy: Despite the reduction in size, the models retained 

high accuracy levels, with only a minor drop in validation accuracy. 

 

Practical Implications of Model Optimization 

 

The optimized models, through pruning, clustering, and quantization, show 

significant potential for deployment in various resource-constrained 

environments. 

 

 Here are some practical applications and benefits: 

• Mobile Devices and Wearables: Optimized models can be deployed on 

smartphones and smartwatches, enabling real-time analytics and 

applications such as health monitoring, predictive text input, and 

personalized user experiences. For example, a quantized LSTM model 

could run efficiently on a smartwatch to analyze user emotions from text 

messages without draining the battery. 

• Internet of Things (IoT) Devices: In IoT ecosystems, devices often have 

limited computational power and memory. By reducing the model size, 

we can deploy intelligent applications directly on these devices. For 

instance, a pruned model could be used in smart home devices to 

provide localized and immediate responses to user commands without 

relying on constant cloud communication. 

 

Benefits of Using Optimized Models 

 

• Resource Efficiency: Optimized models require fewer computational 

resources, making them ideal for devices with limited processing power 

and memory. This efficiency enables broader deployment of intelligent 

systems in various environments. 

• Faster Inference Times: With reduced model sizes, the inference times 

are significantly improved. This is crucial for applications requiring real-

time processing, such as autonomous vehicles, drones, and real-time 

language translation. 

• Cost Reduction: Deploying smaller models can lead to cost savings in 

terms of hardware requirements and energy consumption. For 

businesses, this means lower operational costs and the ability to scale 

their AI solutions more effectively. 



   
 

   
 

• Enhanced User Experience: By enabling faster and more efficient AI 

applications, optimized models can enhance user experiences across 

various applications, from personal assistants to smart home devices, 

providing more responsive and seamless interactions. 

 

Challenges and Insights  

Several challenges were encountered during the project: 

• Pruning and Clustering Complexity: Implementing pruning and clustering 

required a thorough reading of documentation, examples, and tutorials to 

reduce the models size, while retaining its accuracy. 

• Quantization Impact: Quantizing the models led to a minor drop in test 

accuracy, but the impact was minimal, demonstrating the robustness of the 

compression techniques. 

Unexpected Findings 

• Clustered Model Performance: The clustered model's performance was 

close to the pruned model, showing that clustering can be an effective 

alternative to pruning, depending on the specific use case and model 

architecture. 

Project Constraints 

• Time and Resources: The project was conducted within a limited timeframe 

and computational resources, which influenced the extent and depth of 

experiments. Despite these constraints, the project achieved its goals. 

Course Objectives Alignment  

The project aligns with the course objectives by applying advanced machine 

learning techniques to optimize models for practical applications. The hands-

on experience with pruning, clustering, and quantization relates to the learning 

outcomes of understanding and applying machine learning algorithms in real-

world scenarios. 

In conclusion, the project demonstrated that pruning and clustering are viable 

techniques for model compression, achieving significant reductions in model 

size with minimal impact on accuracy. This makes these techniques valuable for 

deploying machine learning models in environments with limited resources. 



   
 

   
 

 

6. Conclusions 

This project provided a comprehensive learning experience in machine 

learning model optimization techniques, specifically focusing on pruning, 

clustering, and quantization. Through this project, I gained valuable insights 

into the practical application of these techniques and their impact on model 

performance and size. 

Key Learnings 

One of the most significant takeaways from this project was understanding 

how different model compression techniques can drastically reduce model 

size while maintaining or even improving accuracy. Pruning helped in reducing 

the number of parameters by eliminating less important connections, whereas 

clustering grouped similar weights, further reducing redundancy. Quantization 

transformed the model to use lower precision arithmetic, thereby reducing 

memory footprint and computational cost. 

 

Project Outcomes 

The project outcomes were positive. The results demonstrated that it is 

possible to achieve substantial model compression without significant loss of 

accuracy. In some cases, like with clustered and quantized models, the 

accuracy even improved slightly, highlighting the potential of these techniques 

in real-world applications where computational resources are limited. 

Challenges and Solutions 

Throughout the project, several challenges were encountered: 

• Model Training Time: Training models, especially with pruning and 

clustering, required considerable time and computational resources. 

Utilizing cloud-based GPU instances helped mitigate this issue. 

• Model Compatibility: Ensuring that pruned and clustered models were 

compatible with TensorFlow Lite for quantization posed some 

difficulties. This was resolved by carefully following the TensorFlow 

documentation and using appropriate functions for stripping, pruning, 

and clustering before quantization. 



   
 

   
 

• Evaluation Metrics: Accurately assessing the impact of each technique 

required careful validation and testing. 

Reflections on the Process 

Reflecting on the entire process, the project was successful in achieving its 

goals. The initial plan was well-structured, and despite some adjustments and 

iterations, the project stayed on track. The primary goal of comparing different 

model compression techniques was achieved, and the insights gained will be 

invaluable for future work. 

Future Work 

In future projects, I would consider incorporating additional compression 

techniques like knowledge distillation, where a smaller student model learns 

from a larger teacher model. This could provide further insights into model 

optimization. Additionally, exploring other deep learning architectures beyond 

LSTM, such as CNNs or transformers, could extend the applicability of these 

findings. 

 

 

Final Thoughts 

Overall, this project has not only deepened my understanding of machine 

learning and model optimization but also enhanced my problem-solving skills. 

It reinforced the importance of thorough experimentation and iterative 

improvement. Moving forward, I am excited to apply these learnings in more 

complex scenarios and continue exploring the vast potential of machine 

learning in various domains. 
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