

Comparing Compression

Techniques for Deep Learning

Models: Pruning, Clustering and

Quantization

• Elias El Haddad

• Utvecklare inom AI & maskininlärning, 400 YH-poäng

• Examensarbete, 15 YH-poäng

• May 2024

Table of Contents

1. Abstract .. 3

2. Introduction ... 3

3. Purpose and Goals ... 3

• Purpose .. 3

• Goals ... 4

4. Method .. 5

5. Results and Analysis .. 9

• Results ... 9

• Analysis ... 11

6. Conclusions .. 12

7. References ... 14

1. Abstract

This thesis compares various model optimization techniques, specifically

pruning, clustering, and quantization. The objective is to evaluate the impact of

the techniques on model size and performance. We trained a base LSTM

model, what is called a “teacher model” on an emotion classification dataset

and then applied pruning and clustering to create two additional optimized

models. These models were subsequently quantized to further reduce their

sizes.

This work highlights the trade-offs between the model compression

techniques and their impact on model performance, providing valuable

insights for deploying efficient models resource-constrained environments.

2. Introduction

This thesis is a part of my education in AI & ML. The project selected for this

thesis is a continuation of the deep learning course and focuses on optimizing

machine learning models. The primary aim is to explore various model

compression techniques to make them more efficient for deployment in

resource-constrained environments.

The project is significant as it addresses practical challenges associated with

deploying large machine learning models in real-world scenarios, such as

mobile devices, smart watches, etc., where computational resources are

limited. By optimizing these models, we aim to maintain high accuracy while

significantly reducing their size, thus making them more feasible for various

applications.

In the following sections, the methodology, results, and analysis of the project

are detailed, providing a comprehensive overview of the techniques used and

their effectiveness. This introduction sets the stage for understanding the

importance and scope of the work done in this thesis.

3. Purpose and Goals

Purpose

This thesis explores and implements model optimization techniques for

machine learning models, specifically focusing on compression methods such

as pruning, clustering, and quantization. The goal is to reduce the size of the

models while maintaining or improving their accuracy. This optimization is

crucial for deploying models in environments with limited computational

resources, such as mobile devices. By leveraging these techniques, the project

aims to make machine learning models more efficient and feasible for real-

world applications, thereby enhancing their usability and performance in

practical scenarios.

Goals

1. Implement and compare model optimization techniques:

• Apply pruning, clustering, and quantization to a baseline LSTM model.

• Evaluate the effectiveness of each technique in reducing model size and

maintaining accuracy.

2. Maintain high model performance:

• Ensure that the optimized models achieve high training and validation

accuracy.

• Compare the performance of the optimized models against the baseline

model to assess the impact of each optimization technique.

3. Develop a comprehensive analysis:

• Provide a detailed analysis of the results, including visualizations to

compare model sizes and accuracies.

• Discuss the trade-offs between model size and performance for each

optimization technique.

4. Practical applications:

• Highlight the benefits of using optimized models in real-world

scenarios.

These goals aim to provide a thorough understanding of model optimization

techniques and their practical applications, contributing valuable insights to

machine learning.

4. Method

In this section, we will detail the methodologies, tools, and decisions made

throughout the project, explaining the technical stack, the logic behind the

choices, and the workflow followed.

Programming language and libraries

Programming language:

• Python: Python was chosen as the main programming language for this

project due to its extensive support for machine learning and data science

libraries, ease of use, and readability. Its large community and wealth of

resources make it an ideal choice. The availability of numerous pre-built

libraries and frameworks significantly accelerates development and

experimentation.

Libraries:

• TensorFlow and Keras: These were used for building, training, and

optimizing the neural network models. TensorFlow provides robust support

for model optimization techniques such as pruning and quantization, while

Keras offers a high-level API for easy model creation. TensorFlow's

integration with Keras simplifies the process of model development,

making it possible to prototype and deploy models efficiently.

• TensorFlow Model Optimization Toolkit (TFMOT): TFMOT was utilized for

implementing pruning and clustering techniques. It integrates seamlessly

with TensorFlow, providing a straightforward way to apply these

optimizations. This toolkit allows for significant reductions in model size and

improvements in inference speed without extensive modifications to the

original model code.

• Scikit-learn: Used for preprocessing tasks such as data splitting and

encoding labels. Scikit-Learn's comprehensive suite of tools for data

preparation and evaluation complements TensorFlow's capabilities,

ensuring that the data fed into the models is clean and well-structured.

• Pandas: Utilized for data manipulation and preprocessing. Pandas is

indispensable for handling large datasets and performing complex

operations with ease, enabling efficient data cleaning and transformation.

• Matplotlib and Seaborn: Employed for visualizing the results and

comparing model performance. These libraries provide a wide array of

plotting functions that help in understanding the data and the model

outcomes better. Visualization is crucial for communicating the

effectiveness of different optimization techniques.

Data and preprocessing

• Dataset: The dataset used in this project is the same as the one used in the

previous deep learning course project, which is “emotions.csv”. It contains text

data with corresponding labels. Reusing this dataset ensures consistency in

evaluating the improvements brought by the optimization techniques applied.

Preprocessing techniques

• Tokenization and Padding: The text data was tokenized and padded to ensure

uniform input size for the neural network. Tokenization involves converting text

into a sequence of integers, where each integer represents a unique word.

Padding adjusts the sequences to a common length, which is necessary for

batch processing in neural networks.

• Label Encoding: Labels were encoded using one-hot encoding to facilitate

multi-class classification. One-hot encoding transforms categorical labels into a

binary matrix representation, which is suitable for the output layer of a neural

network.

Model Architecture

The model architecture used in this project is an LSTM (Long Short-Term Memory)

network, chosen for its effectiveness in handling sequential data. LSTM networks are

particularly well-suited for tasks involving time-series data or text, where maintaining

context over long sequences is essential.

Layers:

• Embedding Layer: Converts input text data into dense vectors of fixed size.

This layer learns a representation of the input text that captures semantic

similarities between words.

• LSTM Layer: Processes the sequential data, capturing dependencies and

patterns in the input sequences. LSTMs can learn long-term dependencies,

making them ideal for tasks like sentiment analysis and language modeling.

• Dropout Layer: Prevents overfitting by randomly dropping a fraction of the

input units during training. Dropout is a regularization technique that improves

the model's generalization ability.

• Dense Layer: Produces the final output with a softmax activation function for

multi-class classification. The softmax function converts the logits into

probabilities, allowing for the prediction of the most likely class.

Model Optimization Techniques

Pruning:

• Pruning: Pruning reduces the number of parameters in the neural network

by removing less important weights, thus reducing model size and

potentially improving inference speed. Pruning can be applied in a

structured or unstructured manner, with structured pruning removing entire

neurons or channels, and unstructured pruning removing individual

weights.

• Implementation: TensorFlow's prune_low_magnitude function from TFMOT

was used to apply pruning. This function identifies and removes weights

with magnitudes below a certain threshold, effectively simplifying the

network.

Clustering:

• Clustering: Clustering reduces the number of unique weight values in the

model, which can lead to better compression. By grouping weights into

clusters and sharing the same value among clustered weights, the model

becomes more efficient.

• Implementation: TensorFlow's cluster_weights function from TFMOT was

utilized for clustering. This technique is particularly useful when deploying

models on hardware with limited memory, as it reduces the storage

requirements.

Quantization

• Quantization: Quantization converts the model weights from floating-point

to lower precision, reducing the model size and improving performance on

hardware with limited resources. Quantization can be applied during

training (quantization-aware training) or after training (post-training

quantization).

• Implementation: TensorFlow Lite's TFLiteConverter was used to quantize

the models. TensorFlow Lite is designed for deploying models on mobile

and embedded devices, providing tools to optimize models for these

environments.

Workflow and project management

Workflow:

• The project was structured in phases, starting with data preprocessing,

followed by model building, training, optimization, and finally, evaluation. Each

phase had specific goals and deliverables, ensuring a systematic approach to

the project.

• Regular reviews and iterations were conducted to ensure the quality and

accuracy of the models. This iterative process allowed for continuous

improvements and adjustments based on the results obtained.

Project management:

• Individual Work: This project was conducted independently, allowing for

flexible scheduling and adaptation of methods to fit the project's needs.

• Agile Methodology: The project followed an Agile approach with iterative

development and frequent evaluations. Agile principles emphasize flexibility,

iterative progress, and continuous feedback, making them well-suited for

research and development projects.

• Sprint Planning: Weekly sprints were planned, with specific goals and

deliverables for each sprint. Sprints allowed for focused work on various

aspects of the project, ensuring steady progress and the ability to adapt to new

insights or challenges.

• Progress Tracking: Regular progress tracking was maintained to ensure

alignment with project goals and timelines. Tools such as personal task lists

were used to manage tasks and track the project's status.

Decision Rationale

• Why Python and TensorFlow/Keras?

Python's extensive ecosystem and ease of use make it ideal for rapid

prototyping and experimentation. The language's simplicity and readability

facilitate collaboration among team members with varying levels of

programming expertise.

TensorFlow and Keras offer powerful tools for model building and

optimization, with extensive documentation and community support. Their

flexibility and performance make them suitable for both research and

production environments.

• Why Pruning, Clustering, and Quantization?

These techniques were chosen for their proven effectiveness in reducing

model size and maintaining accuracy, making them suitable for deployment in

resource-constrained environments. The ability to deploy smaller, efficient

models on edge devices opens new possibilities for real-time applications.

These methodologies and tools were carefully chosen to ensure the project's

success, providing a robust framework for developing and optimizing the

machine learning models. The combination of optimization techniques and a

systematic project management approach ensured that the thesis's goals were

met effectively.

5. Results and Analysis

Results

The primary goal of this thesis was to compare the effectiveness of different

model compression techniques, specifically pruning and clustering, on a

recurrent neural network model trained on text data. The project continued

from a previous course, utilizing the same dataset, preprocessing techniques,

and model architecture.

The dataset used for this project consisted of labeled text data, which was

preprocessed and tokenized to be fed into the model. The base model, an

LSTM (Long Short-Term Memory) network, was trained on this data, and then

subjected to two different compression techniques: pruning and clustering.

To compare the models effectively, the following metrics were considered:

• Model size (KB)

• Training accuracy

• Validation accuracy

• Test accuracy after quantization

Base Model (Teacher Model)

• Size: 4075.13 KB

• Training Accuracy: 99.34%

• Validation Accuracy: 90.60%

Pruned Model

• Size: 1365.81 KB

• Training Accuracy: 99.32%

• Validation Accuracy: 90.17%

Clustered Model

• Size: 1365.78 KB

• Training Accuracy: 98.29%

• Validation Accuracy: 90.03%

Quantized Models' Test Accuracy

• Teacher Model: 91.53%

• Pruned Teacher Model: 91.13%

• Clustered Teacher Model: 91.50%

These results show that both pruning and clustering significantly reduced the

model size while maintaining a high level of accuracy.

To visually represent these findings, we include the following plots:

• Model Sizes - A bar chart comparing the sizes of the three models.

• Training Accuracies - A bar chart showing the training accuracies of the

three models.

• Validation Accuracies - A bar chart displaying the validation accuracies.

• Quantized Models' Test Accuracies - A bar chart comparing the test

accuracies of the quantized models.

Analysis

The analysis focuses on the effectiveness of the compression techniques in

achieving the project goals.

Achieving Project Goals

The project successfully met its primary objectives:

• Model Size Reduction: Both pruning and clustering reduced the model size

by approximately 66%, which is a significant decrease that makes the

models more suitable for deployment in resource-constrained

environments.

• Maintaining Accuracy: Despite the reduction in size, the models retained

high accuracy levels, with only a minor drop in validation accuracy.

Practical Implications of Model Optimization

The optimized models, through pruning, clustering, and quantization, show

significant potential for deployment in various resource-constrained

environments.

 Here are some practical applications and benefits:

• Mobile Devices and Wearables: Optimized models can be deployed on

smartphones and smartwatches, enabling real-time analytics and

applications such as health monitoring, predictive text input, and

personalized user experiences. For example, a quantized LSTM model

could run efficiently on a smartwatch to analyze user emotions from text

messages without draining the battery.

• Internet of Things (IoT) Devices: In IoT ecosystems, devices often have

limited computational power and memory. By reducing the model size,

we can deploy intelligent applications directly on these devices. For

instance, a pruned model could be used in smart home devices to

provide localized and immediate responses to user commands without

relying on constant cloud communication.

Benefits of Using Optimized Models

• Resource Efficiency: Optimized models require fewer computational

resources, making them ideal for devices with limited processing power

and memory. This efficiency enables broader deployment of intelligent

systems in various environments.

• Faster Inference Times: With reduced model sizes, the inference times

are significantly improved. This is crucial for applications requiring real-

time processing, such as autonomous vehicles, drones, and real-time

language translation.

• Cost Reduction: Deploying smaller models can lead to cost savings in

terms of hardware requirements and energy consumption. For

businesses, this means lower operational costs and the ability to scale

their AI solutions more effectively.

• Enhanced User Experience: By enabling faster and more efficient AI

applications, optimized models can enhance user experiences across

various applications, from personal assistants to smart home devices,

providing more responsive and seamless interactions.

Challenges and Insights

Several challenges were encountered during the project:

• Pruning and Clustering Complexity: Implementing pruning and clustering

required a thorough reading of documentation, examples, and tutorials to

reduce the models size, while retaining its accuracy.

• Quantization Impact: Quantizing the models led to a minor drop in test

accuracy, but the impact was minimal, demonstrating the robustness of the

compression techniques.

Unexpected Findings

• Clustered Model Performance: The clustered model's performance was

close to the pruned model, showing that clustering can be an effective

alternative to pruning, depending on the specific use case and model

architecture.

Project Constraints

• Time and Resources: The project was conducted within a limited timeframe

and computational resources, which influenced the extent and depth of

experiments. Despite these constraints, the project achieved its goals.

Course Objectives Alignment

The project aligns with the course objectives by applying advanced machine

learning techniques to optimize models for practical applications. The hands-

on experience with pruning, clustering, and quantization relates to the learning

outcomes of understanding and applying machine learning algorithms in real-

world scenarios.

In conclusion, the project demonstrated that pruning and clustering are viable

techniques for model compression, achieving significant reductions in model

size with minimal impact on accuracy. This makes these techniques valuable for

deploying machine learning models in environments with limited resources.

6. Conclusions

This project provided a comprehensive learning experience in machine

learning model optimization techniques, specifically focusing on pruning,

clustering, and quantization. Through this project, I gained valuable insights

into the practical application of these techniques and their impact on model

performance and size.

Key Learnings

One of the most significant takeaways from this project was understanding

how different model compression techniques can drastically reduce model

size while maintaining or even improving accuracy. Pruning helped in reducing

the number of parameters by eliminating less important connections, whereas

clustering grouped similar weights, further reducing redundancy. Quantization

transformed the model to use lower precision arithmetic, thereby reducing

memory footprint and computational cost.

Project Outcomes

The project outcomes were positive. The results demonstrated that it is

possible to achieve substantial model compression without significant loss of

accuracy. In some cases, like with clustered and quantized models, the

accuracy even improved slightly, highlighting the potential of these techniques

in real-world applications where computational resources are limited.

Challenges and Solutions

Throughout the project, several challenges were encountered:

• Model Training Time: Training models, especially with pruning and

clustering, required considerable time and computational resources.

Utilizing cloud-based GPU instances helped mitigate this issue.

• Model Compatibility: Ensuring that pruned and clustered models were

compatible with TensorFlow Lite for quantization posed some

difficulties. This was resolved by carefully following the TensorFlow

documentation and using appropriate functions for stripping, pruning,

and clustering before quantization.

• Evaluation Metrics: Accurately assessing the impact of each technique

required careful validation and testing.

Reflections on the Process

Reflecting on the entire process, the project was successful in achieving its

goals. The initial plan was well-structured, and despite some adjustments and

iterations, the project stayed on track. The primary goal of comparing different

model compression techniques was achieved, and the insights gained will be

invaluable for future work.

Future Work

In future projects, I would consider incorporating additional compression

techniques like knowledge distillation, where a smaller student model learns

from a larger teacher model. This could provide further insights into model

optimization. Additionally, exploring other deep learning architectures beyond

LSTM, such as CNNs or transformers, could extend the applicability of these

findings.

Final Thoughts

Overall, this project has not only deepened my understanding of machine

learning and model optimization but also enhanced my problem-solving skills.

It reinforced the importance of thorough experimentation and iterative

improvement. Moving forward, I am excited to apply these learnings in more

complex scenarios and continue exploring the vast potential of machine

learning in various domains.

7. References

• https://www.tensorflow.org/api_docs/python/tf/keras/utils/register_kera

s_serializable

• https://www.tensorflow.org/api_docs/python/tf/lite
• https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/

sparsity/keras/prune_low_magnitude

https://www.tensorflow.org/api_docs/python/tf/keras/utils/register_keras_serializable
https://www.tensorflow.org/api_docs/python/tf/keras/utils/register_keras_serializable
https://www.tensorflow.org/api_docs/python/tf/lite
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/prune_low_magnitude
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/prune_low_magnitude

• https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/

clustering/keras/cluster_weights

• https://www.kaggle.com/code/sumn2u/pruning-and-quantization-in-

keras

https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/clustering/keras/cluster_weights
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/clustering/keras/cluster_weights
https://www.kaggle.com/code/sumn2u/pruning-and-quantization-in-keras
https://www.kaggle.com/code/sumn2u/pruning-and-quantization-in-keras

