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Abstract

Market makers are one of the biggest providers
of liquidity in financial markets. Whether they
are dealing with stocks, bonds, options, or even
exotics, market making has become a mainstream
way for traders to exploit market inefficiency and
create statistical arbitrage. In addition to demys-
tifying this field, we aim to tackle this challeng-
ing problem using a reinforcement learning agent.
While past reinforcement learning market making
agents have used a host of assumptions that de-
couples market dynamics from the agent’s actions,
we implement a direct limit-order book simula-
tion method that is more realistic for a real-time
high-frequency trading setting.

1. Introduction
1.1. Overview

We begin by first defining the terminology essential to our
model. We will be working in a high frequency environment,
using millisecond-by-millisecond data, under the assump-
tion of no latency or transaction costs associated with our
electronic market. Said market primarily consists of a limit
order book wherein we distinguish between limit and market
orders.

This limit order book is a listing of all possible bids (offers
to buy) and asks (offers to sell) of a stock at a specified
price and quantity (see Fig. 1). Each limit order stays in the
book until either someone on the opposing side decides to
execute it by placing a market order or we as the market
maker remove it ourselves.

A market order is an immediate purchase, or sale, of a
security at the best price available. This could either refer
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Figure 1. Basic model of a limit-order book

to the best/highest bid-price or the best/lowest ask-price,
depending on whether the order is sell or buy, respectively.
Placers of market orders are market takers; they simply ask
for a quantity and are given the securities at one of more
prices depending on their execution amount. If the quantity
specified by that limit order runs out, then the rest of the
market order “eats” the next best ask price, and so on.

As a market maker, our goal is to constantly reshape the or-
der book with limit orders to convince potential market par-
ticipants to engage, thus allowing us to accumulate wealth
over time. We work in a large volume, high frequency envi-
ronment to explore an area of market making that has not
been well researched in a reinforcement learning perspec-
tive.

While market making is usually optimized from a purely sta-
tistical background using statistical arbitrage (Xiong et al.,
2015; Law & Viens, 2020), we want to use reinforcement
learning to optimize a market making agent and find multi-
ple possible valid market making strategies. Reinforcement
learning has been used before to optimize various similar
problems, such as a statistical arbitrage problem on high-
frequency trading by Lim & Gorse (2018), high-frequency
market making strategies using a Gaussian-kernel approx-
imation of a limit order book by Gasperov & Kostanjcar
(2022), and using historical data to model a functional ap-
proximation of limit order book by Guo et al. (2023). While
all of these implementations have merit as approximations
under their respective assumptions, they effectively decou-
ple the market maker’s actions from the market’s trading
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intensity. We realize direct agent-market coupling via im-
plementing a fully-functional limit order book that is used
to simulate market trajectories.

1.2. State Space

We define our environment in accordance with the landmark
paper on high-frequency market making written by Avel-
laneda & Stoikov (2008). We denote St as the mid-price of
the stock at time t which is meant to represent the average
between the best bid price and the best ask price across all
markets. The mid-price is a good theoretical expectation for
the average value of a stock at time of liquidation, and so it
will solely be used to evaluate the stock price at the end of
each simulated episode. At high frequency and without ac-
cess to all markets and limit order books containing a given
stock, the mid-price is not actually the arithmetic average,
so we instead utilize the following Brownian motion without
drift Stochastic Differential Equation (SDE) to simulate the
discrete updates to the mid-price:

dSt = σdWt (1)

The use of this specific stochastic update is simply that on
these time-scales—millisecond steps and trajectories that
don’t even extend out to ten minutes—perturbations to the
mid-price are well-approximated by the limit of a symmetric
random walk. We also define δb = St−pb as the bid spread
and δa = pa − St as the ask spread. We expect that in
an efficient market, makers and takers act to functionally
restore spreads to an optimum, so when they are large, our
agent should learn that closing the spread likely benefits us
in the long run, and when they are small, it should widen
them to maximize wealth ’transfer’.

Based on the number of market orders we have received in a
period, our stock holdings/inventory will also be stochastic
variable. We denote the market maker’s inventory as It =
N b

t −Na
t where N b

t is the process governing the cumulative
number of stocks we have bought via other simulated agents’
market sell orders, and vice versa with Na

t (in the sense we
are effectively taking on a short position as the counterparty
to a market buy). In (Avellaneda & Stoikov, 2008), they find
that market order intensities should follow a Poisson process
with rates λb(δb), λa(δa) that are each parameterized by an
exponential function.

Finally, we also observe our wealth Wt which is a function
of the change in inventory components and price at the time
of the market order. We govern this process by the following
SDE:

dWt = padNa
t − pbdN b

t (2)

To track all of the data in the order book, as opposed to only
tracking the best bids and asks, we begin by defining an
OrderBook class that contains the full limit-order book –

even so-called ”stub quotes” far from best bid/ask not meant
for immediate execution – and can be used to return these
parameters and the entire distribution of limit orders.

So in full, our observation at time t is

Ot ≡
(
W, I, S, δb, N b, δa, Na

)
t

(3)

which corresponds to observing our internal state of wealth
and inventory along with the state of the LOB. We also
include t in the observation to account for temporal correla-
tions.

1.3. Action Space

In the real world, market makers are sampling their states
with some latency from an environment that contains a
whole lot of different agents: value investors, arbitrage
investors, other high-frequency market makers, wealth in-
vestors, etc. They can’t control this but they can exert influ-
ence over a sufficiently large proportion of the limit order
book so as to effectively achieve total influence within the
scope that a limit order book can influence other agents, i.e.
within the market they’ve made. As such, in our environ-
ment, we too seek to exploit inefficiencies in the processes
simulating other-agent behaviors solely through our control
of the limit order book. We can place both bid and ask limit
orders:

at = (P b, N b, P a, Na)t. (4)

On our short time-scales, we ideally only submit limit orders
that change the new best bid or ask. This could result in
either increasing or decreasing the spreads depending on the
sign of N , with a negative number of stocks corresponding
to increasing the spread by removing a bid or an ask. On
longer time-scales, we must also make sure that there are
always stocks in the limit-order book, and may add limit
orders at a larger spread to account for this.

1.4. Reward Function

We first considered using a ’frozen reward’ similar to Avel-
laneda & Stoikov (2008) such that the intermediate reward
is discounted by the time left,

exp(−γ′τ(WT + ITST )), (5)

where γ′ is the constant absolute risk aversion and τ is the
time left until the terminal time.

We however found that while this for many choices of γ this
function would have trouble learning what to do before the
terminal time period, and thus the learning was erratic.

We therefore introduce a final reward,

WT + ITST , (6)
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that is only given to the agent at the terminal time T and
is then discounted by a discount factor γ that propagates
backwards when computing the trajectory returns which
will incentivize the final liquidation “value” of the market.

To stress the order book providing enough liquidity to the
market during intermediate times, we decided to only give
the reward if the order book does not run out of limit orders
before the terminal time (early termination). By disincen-
tivizing early termination we force our agent to escape the
local minima of getting rid of all its inventory as fast as pos-
sible and being able to prioritize long term rewards with an
understanding of the sustained dynamics of full trajectories
of the simulation.

Another reward we considered is from a recent paper that
introduces an immediate utility based reward that can be
discounted to further improve the model over times that are
farther away from the terminal time (Lim & Gorse, 2018).
They introduce an immediate reward function parameterized
by the wealth difference dWt, inventory difference dIt, time
remaining in the horizon τt = T − t (for terminal time T ),
and two positive constants a and b:

Rt = a(dWt) + e−bτtsgn(dIt) (7)

This will allow us to learn intermediate rewards that will
also help us improve total value over time. However, the
papers utilizing these reward functions simplify the action
space to solely learning the spreads, not the long term reper-
cussions of the quantities associated with submission of
limit orders. We found that this intermediate reward func-
tion did not properly incentivize long times, so we define a
full intermediate reward function of

Rt = a(dWt) + e−bτtsgn(dIt) + c(T − t) (8)

and decide to normalize a, b, c so that each element has a
realistic maximum of 1. This reward ensures that our agent
is taking both long and short positions and is reaching the
terminal time (see section 3).

1.5. Parameter Estimation

To build a consistent dynamics model, we gathered high
frequency data from Wharton Research Data Services of
a day’s worth of market book movements for the S&P500,
an index fund containing 500 of the largest valued public
companies.

We model the mid-price by sampling Brownian motion. To
infer the drift and scale parameters of said Brownian motion,
we back out MLEs of the discrete time approximation for
the following SDE:

dSt = µdt+ σdZt (9)

Where Zt is a standard brownian motion. We use the pa-
per from (Mykland & Zhang, 2009) for our inference and
obtained the parameters µ̂ = 3.59 ∗ 10−6, σ̂ = 2.4 ∗ 10−3.

We make the well-founded assumption that the arrivals of
market orders follows a Poisson process. The mean parame-
ter of these processes, λa and λb, can be expressed as the
following function of q, the current quantity associated with
the best bid or ask,

λ(q) = exp
(
β0 + β1 ln(1 + q) + β2(ln(1 + q))2

)
, (10)

as described in (Toke & Yoshida, 2017). Running linear
regression on the log of this equation, we obtain unbiased
estimation on the parameters. However, we immediately
found that the estimation was inconsistent and would lead to
the order book terminating too quickly as our agent would
learn an unrealistic situation. As a result, we decided to
implement the spread into this equation as well, denoted as
s.

λ(s, q) = exp

(
β0 + β1 ln(1 + q) + β2(ln(1 + q))2

+β3 ln(1 + s) + β4(ln(1 + s))2

+β5 ln(1 + s+ q)

)
(11)

The interpretation of this function for the intensity is that it
acts as a demand function. When the best quotes have high
quantity, this indicates to the consumer the supply is large,
and so they will demand less as many of the consumers will
wait for a better price. Additionally if the spread is too large,
then the demand will be small, forcing our agent to shrink
the spread. This creates a nice push-pull dynamic between
the agent and the market.

2. Reinforcement Learning Approach
To learn an incredibly complicated environment, we use
policy gradients to easily leverage neural networks to model
the high dimensional complexity of our action space and
stochastic policies for the optimal policy class. Previous
work in Guo et al. (2023) implements a highly complex
neural network infrastructure for both the policy and value
approximation that takes in many observation, action, re-
ward pairs using multiple convolutional and attention layers.
Due to time constraints, we implement a much simpler ar-
chitecture that consists of 2 hidden layers of size 10, with
ReLU activations.
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2.1. Code layout

2.1.1. LIMIT ORDER BOOK

Starting with the most novel thing about our approach
to market making with reinforcement learning on limit
order books, we actually implement a limit order book,
whereas most in the literature just work around ac-
tually implementing and interacting with a simulated
one. The file book.py contains the LimitOrderBook
class, which represents a limit order book tracking
bids and asks. This class has attributes such as
bids & asks. The methods in this class include
add order(side, price, quantity) to add an
order to the book, remove order(side, price,
quantity) to remove an order, and get best bid()
& get best ask().

2.1.2. RL & MM CONFIGURATION

Still detailing the infrastructure on top of which our model
learns and trains, config.py file defines the Config
class, which holds configuration settings for the market
making simulation. This class includes attributes such as
trajectory that controls returns type, n episodes,
n batches, n epochs, do ppo,lambda, etc. Basically
every parameter that we’ve varied in our experiments to tune
said parameters to result in the best policy.

2.1.3. MARKET ENVIRONMENT

The Market class in market.py creates a detailed mar-
ket environment using a limit order book, simulating the
actual trading environment where the market maker oper-
ates. This class is initialized with a configuration object and
maintains an instance of LimitOrderBook to manage
the bid and ask orders. The reset() method reinitializes
the order book and the time step, setting up a fresh environ-
ment for each new episode of training or testing. The step
method is central to the simulation, evolving the market
order book by updating the midprice and placing market or-
ders. It computes changes in wealth and inventory (dW and
dI), as well as tracking the number of bid hits and ask lifts.
The lambda buy and lambda sell methods model the
arrival rates of buy and sell market orders based on the cur-
rent state of the order book and specified betas. The state
method returns the current state of the market as a tuple,
including the number of bids and asks and their respective
prices. The act method determines the actions to be taken
on the order book, which can be based on a naive policy,
a policy network, or an Avellaneda-Stoikov strategy that
adjusts prices based on the reservation price and optimal
spread. Actions determined by the act method are exe-
cuted using the submit method, which places limit orders
on the LOB. This method ensures the bid and ask deltas
are non-negative and rounds the order quantities to inte-

gers. The market dynamics and trading environment created
by the Market class are crucial for training and evaluat-
ing the performance of market making policies, enabling
realistic simulations of trading strategies. This comprehen-
sive environment setup is crucial for accurately simulating
market conditions, allowing the market making policy to
learn and adapt effectively through reinforcement learning.
We also have fast market.py with the FastMarket
class, which tries to leverage an all-PyTorch approach for
speed and running everything possible on the GPU.

2.1.4. TRAINING THE MARKET MAKER CODE

The MarketMaker class integrates the Market environ-
ment with a reinforcement learning policy. It initializes
the market and policy using the given configuration and
provides methods for training and testing the policy. The
train method runs multiple episodes, resetting the market
each time and using the policy to select actions and update
Q-values based on observed rewards. The test method
evaluates the policy in the market environment, tracking the
total reward over the episode. The save and load meth-
ods manage the persistence of trained models, saving and
loading policy networks and final returns. The get paths
method generates trajectories and computes rewards based
on the immediate state, supporting both standard and PPO
(Proximal Policy Optimization) training. It handles variable-
length trajectories and computes advantages for policy up-
dates. The plot methods visualize the final scores and
trajectories, providing insights into the performance and
behavior of the trained market making policy. The Policy
class in policy.py represents the reinforcement learning
policy used by the market maker. We mainly utilize a Gaus-
sian Policy like the one from Assignment 2, and didn’t end
up implementing the discrete Categorial policy.

2.1.5. MISCELLANEOUS AND NOT SO MISCELLANEOUS

In rewards.py, the function
calculate reward(inventory, cash, price,
config) calculates the reward based on the current
inventory, cash, and price, returning a reward scaled by
the reward scaling factor in the configuration. There
are actually several different reward functions contained
here, as a good reward function was really one of biggest
chokepoints for this project. Finally, the util.py file
provides all of the odds and ends, many of which are very
important for actually plotting the visualizations of our
training process, that allow everything to gel and flow.

2.2. Return Algorithm

We consider Monte-Carlo returns (MC) and eligibility trace
returns (TD).

For a while, we were thinking of fully incorporating TD
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learning, using the past x states to inform the current action
instead of just the current state.

However, due to time constraints, we decided to settle for
just taking into account the current state to keep the al-
gorithm space simple and let trainings take a reasonable
amount of time.

3. Experimental Results
To start with a sufficiently large order book, we simulate 0.3
seconds (300 time steps) of the environment transitions with
our policy being submitting limit orders at random. This
provided the best consistency fro initial state distirbution
and also yielded the msot impressive results. Below we
include a sample series of plots under the benchmark policy.

Figure 2. The action of the default policy over 100 trajectories. The
top plot shows the evolution of the lowest ask Pa (red), highest bid
Pb (blue), and the midprice St(purple). The middle plot shows the
cumulative wealth Wt and inventory It. The bottom plot shows
the total intermediate market value of our cummulative market
value, Wt + ItSt

We found an optimal number of timesteps of 5000, corre-
sponding to a terminal time of 5s, and an optimal number
of batches of 100. Ideally the number of batches per epoch
should be higher to fully sample the Brownian motion of
the order book midprices, but due to time constraints we
wanted training that took less than 4 hours to complete per
policy.

3.1. Determining the Best Reward Function

We consider two primary ways of incentivizing the agent to
reach terminal times.

The first is by giving it an intermediate time reward that
increases for longer times in accordance with equation 8,
which we will call the immediate reward strategy.

The second is letting the market liquidate its assets regard-
less of reaching the terminal time, with a thought that it will
linearly increase the final value of WT + ITST . Let’s call
this the liquid reward strategy.

Figure 3. The performance of the liquid reward strategy over
time as measured by the final scores (left) and final values (right)
of the market maker. Note that the returns are equivalent to the
plotted values for this reward strategy.

Figure 4. The performance of the immediate reward strategy
using MC returns, as measured by the final scores (left) and the
final values (right). This is our best-performing case (see Fig. 13)

Both of the above reward strategies use PPO, but clearly the
liquid reward function learns a much better policy. In
figure 3, we see that while the policy gets worse after reach-
ing its maxima in final values, it finds this after relatively
few training episodes and is on the same order of magnitude
as, say, the final values of immediate rewards with MC
returns.

We also tried adding an immediate reward that was just dWt.
The results are shown below:

3.2. Determining the Best Returns Method

We either use default Monte-Carlo returns, MC, or imple-
ment the TD-λ eligibility trace, TD.

The performance of TD is significantly decoupled from the
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Figure 5. MC returns with only a dWt reward, using PPO

values we want to see for our reward functions, with value
plots decreasing across epochs. The MC returns show im-
provement over epochs, which is what we want to see. It
is a future question of why TD returns doesn’t generate the
correct value.

Figure 6. The performance of the immediate reward strategy
over time using TD returns, both the internal final score (left) and
the final values (right).

Figure 7. The performance of the liquid reward strategy over
time using TD returns, both the internal final score (left) and the
final values (right).

3.3. Removing Parts of PPO one at a time

We wanted to explore whether the complete PPO gradient
method is really necessary, so let’s build up to PPO from just
using REINFORCE. The results are not too surprising. All
of the following runs are made using Monte-Carlo returns
and an intermediate reward function.

3.4. Fine-Tuning Our Best Policy

We found that using MC returns and intermediate re-
wards provided the best optimization with our desired mar-

Figure 8. The performance of REINFORCE without using an ad-
vantage function.

Figure 9. The performance of REINFORCE with a normalized
advantage function.

Figure 10. The performance of PPO without clipping and without
an advantage function.

Figure 11. The performance of PPO with clipping but without an
advantage function.

ket behavior. Using PPO, with a normalized advantage
function and with clipping, proves to be way more robust
than simpler policy gradient methods. We therefore com-
bine these aspects and fine-time our reward function in order
to achieve our best run:

Between these epochs, we can see that our optimal policy
learns to prioritize the final liquidation more and more. We
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Figure 12. The performance of PPO with an advantage function
but without clipping.

Figure 13. Our best run so far, maxed out at 215 training epochs
with a final value of $120,000, over a single second! See Fig. 4

can observe this with the change in directions of the wealth
and inventory processes, where the minimum/maximums
occur earlier as the episodes progress. We see the order
book stabilizes as well, where the best bids and asks both
progress more consistently, indicating better convergence to
an optimal policy. Towards the end, we see that there are
heavy fluctuations. This is because the policy has learned
to engage in tactics to draw consumers in towards the end
so our inventory is large, giving us a great terminal reward.
While the final reward is lower for this policy, we have
learned a better allocation of resources that leads to a bet-
ter trajectory on average, versus a high-risk high-reward
strategy.

Finally, we can see that the order book ends up terminating
much quicker. This is because the market making agent
realizes that the market order agents will adapt quickly to
the environment over longer periods of time. This is an
interesting, yet expected byproduct of our construction, but
in the end it may be a good idea to consider other type of
penalties to prevent early termination.

Figure 14. The best learned policy, after 400 training epochs. It is
interesting that at first, the market begins taking a short position
on the stock, and then ends with a long position on the stock.

4. Conclusion
4.1. Future Work

We have had to face a ton of issues throughout this project
that can definitely be further fine tuned in the future. For
starters, utilizing some of the more recent, cutting-edge liter-
ature on statistical techniques for simulating our limit order
book dynamics. This could include changing the mid-price
model to geometric Brownian motion, or using a differ-
ent statistical estimation technique such as high frequency
regression.

A better reward function really is the holy grail here, though,
and the literature is full of attempts to derive them. We
essentially had to resort to reward engineering ourselves
to achieve consistent learning properties and minimize the
amount of undesirable reward hacking occurring, but using
imitation learning with an expert policy from realized data
could help to create a more robust reward function.

We worry the current implementation of our overall model
might not be incredibly conducive to generalization. Trans-
action costs and latency are actually some of the biggest
problems faced by market makers. Including these would
probably show that the market is not as arbitrageable as we
have made it out to be, as even the most naive algorithms
resulted in our market making agent profiting (albeit we see
improvement from the initial to final agent). We did not
have the appropriate resources, but in the future if possible
using limit order book data to backtest this policy and our
simulation would also allow us to speak more to the effi-
ciency of these algorithms, rather than relying solely on our
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possibly oversimplified simulation.

Finally, possibly introducing many competing market mak-
ing agents could reduce the presence of arbitrage opportuni-
ties. This could include also introducing and training agent
for the market order dynamics, or even a market agent for
the mid-price dynamics. In reality, in large volume market
making there are so many different players that affect the or-
der book, properly figuring out a way to model any more or
all of these agents would improve our accuracy, and in some
way we’re contributing part of that complex ecosystem with
the market making agent itself.
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Appendix
Software and Data

You can view the project Github here. The data used to
model the stocks was gathered from Wharton Research
Data Services.
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