
Version 3.01

Developer's Information
Pack

Creative Technology Ltd.

Creative Technology Ltd.
Copyright © Creative Technology Ltd., 1994-96. All rights reserved.

SB AWE32 Developer's Information Pack Contents •• i
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Contents

PART I Introduction 4

License Agreement/Limitation And Disclaimer Of Warranties... 4
This Package... 5
Using This Manual.. 6
Document Conventions.. 7
Getting Assistance... 8
What You Need To Know... 8

PART II DOS Real/Protected Mode API 11

Overview.. 11
Hardware Detection And Initialization ... 12

awe32Detect... 12
awe32DetectEx... 12
awe32InitHardware.. 13
awe32Terminate... 13

MIDI Services... 13
awe32InitMIDI... 14
awe32InitNRPN ... 14
awe32NoteOn... 14
awe32NoteOff .. 15
awe32ProgramChange.. 15
awe32PitchBend... 16
awe32Controller... 16
awe32ChannelPressure... 17
awe32PolyKeyPressure.. 18
awe32Sysex.. 18
__awe32NoteOff .. 19
__awe32IsPlaying .. 20

SoundFont Bank And Downloadable DRAM Services... 20
awe32TotalPatchRam... 21
awe32DefineBankSizes.. 22
awe32SFontLoadRequest ... 22
awe32StreamSample .. 23
awe32SetPresets... 24
awe32ReleaseBank .. 24
awe32ReleaseAllBanks.. 25
awe32WPLoadRequest... 25
awe32WPLoadWave.. 26
awe32WPStreamWave... 26
awe32WPBuildSFont ... 27

Real and Protected Mode API Programming Guide.. 27
Using the libraries .. 28
Initialization.. 28

SB AWE32 Developer's Information Pack Contents •• ii
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Termination.. 29
Using embedded GM presets.. 29
Loading a SoundFont Bank... 29
Loading wave data as an instrument... 30
Using awe32DefineBankSizes.. 31
Starting and ending addresses... 32
Significance of awe32NumG variable.. 33
Enable real-time panning using awe32RTimePan variable .. 33

CTPNP.CFG Sample .. 34

PART III Windows Driver API 35

Overview.. 35
Application Programmer Interface.. 36

AWE Manager DLL.. 36
AWE Manager message function.. 37
Manager Messages ... 38
Message Reference... 40
Error Messages... 73

Windows Programming Guide.. 75
Opening and closing... 75
Querying for supports... 76
Retrieving selections .. 79
Issuing selections.. 80

PART IV MIDI NRPN Implementation 83

What Is MIDI Non-Registered-Parameter-Number?... 83
How do I use SBAWE32 NRPN?... 83
The EMU8000 Sound Architecture.. 84
EMU8000 Sound Elements... 86

Oscillator.. 86
Low Pass Filter .. 86
Amplifier.. 86
LFO1.. 86
LFO2.. 86
Filter Resonance... 86
LFO1 to Volume (Tremolo).. 86
LFO1 to Filter Cutoff (Wah-Wah).. 86
LFO1 to Pitch (Vibrato).. 87
LFO2 to Pitch (Vibrato).. 87
Volume Envelope... 87
Pitch and Filter Envelope ... 87
Pitch/Filter Envelope Modulation .. 88

SB AWE32 MIDI NRPN List... 88
NRPN LSB 0 (Delay before LFO1 starts) ... 88
NRPN LSB 1 (LFO1 Frequency).. 88
NRPN LSB 2 (Delay before LFO2 starts) .. 88
NRPN LSB 3 (LFO2 Frequency).. 88
NRPN LSB 4 (Envelope 1 delay time)... 89
NRPN LSB 5 (Envelope 1 attack time) .. 89
NRPN LSB 6 (Envelope 1 hold time)... 89
NRPN LSB 7 (Envelope 1 decay time) .. 89
NRPN LSB 8 (Envelope 1 sustain level).. 89
NRPN LSB 9 (Envelope 1 release time) .. 89

SB AWE32 Developer's Information Pack Contents •• iii
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

NRPN LSB 10 (Envelope 2 delay time)... 90
NRPN LSB 11 (Envelope 2 attack time) .. 90
NRPN LSB 12 (Envelope 2 hold time)... 90
NRPN LSB 13 (Envelope 2 decay time) .. 90
NRPN LSB 14 (Envelope 2 sustain level).. 90
NRPN LSB 15 (Envelope 2 release time) .. 90
NRPN LSB 16 (Initial Pitch).. 91
NRPN LSB 17 (LFO1 to Pitch).. 91
NRPN LSB 18 (LFO2 to Pitch).. 91
NRPN LSB 19 (Envelope 1 to Pitch) ... 91
NRPN LSB 20 (LFO1 to Volume).. 91
NRPN LSB 21 (Initial Filter Cutoff) .. 92
NRPN LSB 22 (Initial Filter Resonance Coefficient)... 92
NRPN LSB 23 (LFO1 to Filter Cutoff)... 92
NRPN LSB 24 (Envelope 1 to Filter Cutoff).. 93
NRPN LSB 25 (Chorus Effects Send) .. 93
NRPN LSB 26 (Reverb Effects Send).. 93

PART V 3D Positional Audio API 94

Library Overview ... 94
3D Positional Audio Overview .. 94
SB AWE32 DOS 3D Positional Audio Library .. 96
Types and Structures... 96
System Functions... 97

c3daInit... 97
c3daEnd.. 97
c3daSetDopplerEffect .. 98
c3daSetMaxDistance .. 98

Emitter Functions.. 98
c3daCreateEmitter.. 99
c3daDestroyEmitter.. 99
c3daSetEmitterPosition .. 100
c3daSetEmitterOrientation.. 100
c3daSetEmitterSoundState.. 101
c3daSetEmitterGain.. 101
c3daSetEmitterPitchInc... 101
c3daSetEmitterDelay.. 102
c3daSetEmitterMIDISource.. 102

Receiver Functions ... 103
c3daCreateReceiver ... 103
c3daDestroyReceiver ... 103
c3daSetActiveReceiver.. 104
c3daGetActiveReceiver ... 104
c3daSetReceiverPosition.. 104

Programming Example.. 105
Implementing Receiver Orientation... 107

SB AWE32 Developer's Information Pack PART I Introduction •• 4
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

PART I Introduction

License Agreement/Limitation And Disclaimer Of
Warranties

IMPORTANT NOTE : BY DOWNLOADING AND/OR USING THE SOFTWARE AND/OR
MANUAL ACCOMPANYING THIS LICENSE AGREEMENT, YOU ARE HEREBY
AGREEING TO THE FOLLOWING TERMS AND CONDITIONS:

The software and related written materials, including any instructions for use, are provided on an "AS
IS" basis, without warranty of any kind, express or implied. This disclaimer of warranty expressly
includes, but is not limited to, any implied warranties of merchantability and/or of fitness for a particular
purpose. No oral or written information given by Creative Technology Ltd., its suppliers, distributors,
dealers, employees, or agents, shall create or otherwise enlarge the scope of any warranty hereunder.
Licensee assumes the entire risk as to the quality and the performance of such software and licensee
application. Should the software, and/or Licensee application prove defective, you, as licensee (and not
Creative Technology Ltd., its suppliers, distributors, dealers or agents), assume the entire cost of all
necessary correction, servicing, or repair.

RESTRICTIONS ON USE

Creative Technology Ltd. retains title and ownership of the manual and software as well as ownership of
the copyright in any subsequent copies of the manual and software, irrespective of the form of media on
or in which the manual and software are recorded or fixed. By downloading and/or using this manual and
software, Licensee agrees to be bound to the terms of this agreement and further agrees that :

(1) CREATIVE'S BBS/FTP/COMPUSERVE ARE THE ONLY ONLINE SITES WHERE USERS
MAY DOWNLOAD ELECTRONIC FILES CONTAINING THE MANUAL AND/OR
SOFTWARE,

(2) LICENSEE SHALL USE THE MANUAL AND/OR SOFTWARE ONLY FOR THE PURPOSE
OF DEVELOPING LICENSEE APPLICATIONS COMPATIBLE WITH CREATIVE’S SOUND
BLASTER AWE32 SERIES OF PRODUCTS, UNLESS OTHERWISE AGREED TO BY
FURTHER WRITTEN AGREEMENT FROM CREATIVE TECHNOLOGY LTD.; AND,

(3) LICENSEE SHALL NOT DISTRIBUTE OR COPY THE MANUAL FOR ANY REASON OR BY
ANY MEANS (INCLUDING IN ELECTRONIC FORM) OR DISTRIBUTE, COPY, MODIFY,

SB AWE32 Developer's Information Pack PART I Introduction •• 5
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

ADAPT, REVERSE ENGINEER, TRANSLATE OR PREPARE ANY DERIVATIVE WORK
BASED ON THE MANUAL OR SOFTWARE OR ANY ELEMENT THEREOF OTHER THAN
FOR THE ABOVE SAID PURPOSE, WITHOUT THE EXPRESS WRITTEN CONSENT OF
CREATIVE TECHNOLOGY LTD.. CREATIVE TECHNOLOGY LTD. RESERVES ALL
RIGHTS NOT EXPRESSLY GRANTED TO LICENSEE IN THIS LICENSE AGREEMENT.

LIMITATION OF LIABILITY

In no event will Creative Technology Ltd., or anyone else involved in the creation, production, and/or
delivery of this software product be liable to licensee or any other person or entity for any direct or
other damages, including, without limitation, any interruption of services, lost profits, lost savings, loss
of data, or any other consequential, incidental, special, or punitive damages, arising out of the purchase,
use, inability to use, or operation of the software, and/or licensee application, even if Creative
Technology Ltd. or any authorised Creative Technology Ltd. dealer has been advised of the possibility
of such damages. Licensee accepts said disclaimer as the basis upon which the software is offered at the
current price and acknowledges that the price of the software would be higher in lieu of said disclaimer.
Some states do not allow the limitation or exclusion of liability for incidental or consequential damages
so the above limitations and exclusions may not apply to you.

Information in this document is subject to change without notice. Creative Technology Ltd. shall have no
obligation to update or otherwise correct any errors in the manual and software even if Creative
Technology Ltd. is aware of such errors and Creative Technology Ltd. shall be under no obligation to
provide to Licensee any updates, corrections or bug-fixes which Creative Technology Ltd. may elect to
prepare.

Creative Technology Ltd. does not warrant that the functions contained in the manual and software will
be uninterrupted or error free and Licensee is encouraged to test the software for Licensee's intended use
prior to placing any reliance thereon.

Copyright 1994-96 by Creative Technology Ltd. All rights reserved.

Sound Blaster Advanced WavEffects is a trademark of Creative Technology Ltd.

MS-DOS is a registered trademark and Windows is a trademark of Microsoft Corporation.

SoundFont is a registered trademark of E-mu Systems, Inc.

All other products are trademarks or registered trademarks of their respective owners.

This Package

This developer's information pack is made for third party DOS and Microsoft Windows developers who
intend to develop MIDI oriented software programs for Creative's Sound Blaster AWE32. It includes
easy-to-use functions and a complete interface that supports MIDI playback and Sound Blaster AWE32
DRAM downloading.

This document describes the pack's set of low level DOS and Microsoft Windows API to program the
Sound Blaster AWE32. It contains object libraries for common MIDI routines and SB AWE32
SoundFont bank downloading for DOS (real and protected modes) and Microsoft Windows. These

SB AWE32 Developer's Information Pack PART I Introduction •• 6
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

library functions are designed with the objective of allowing you to create your own code in the
following forms :

• Terminate-stay-resident MIDI drivers

• Loadable MIDI drivers

• Embedded MIDI applications

We at Creative Labs has spent much effort in creating the drivers and libraries to save your development
time. We have taken great care to meet the requirements of the various types of developers and to reduce
the possibilities of clashes with other TSRs or Windows system drivers. It is our hope that all the
facilities provided in this information pack meet with your development needs.

Using This Manual

This document is organized into four main parts. The first details the API for DOS, the second the API
for Windows and the third on SB AWE32’s MIDI non-registered-parameter-number implementation. The
last part describes the 3D Positional Audio Library. The organization, in detail, is as follows:

PART II DOS Real/Protected Mode API, describes the SB AWE32 DOS real and protected mode
API.

Overview, gives a quick look at the SB AWE32 DOS real and protected mode API.

Hardware Detection And Initialization, provides interfaces to prepare the EMU8000
subsystem for use.

MIDI Services, provides interfaces to process MIDI events.

SoundFont Bank And Downloadable DRAM Services, gives interfaces to load SoundFont
banks and wave data.

Real and Protected Mode API Programming Guide, gives a general description on using the
DOS Real and Protected mode API.

CTPNP.CFG Sample, gives a sample of a typical CTPNP.CFG configuration file.

PART III Windows Driver API , describes the SB AWE32 Windows driver API.

Overview, gives a general look at the SB AWE32 Windows driver API.

AWE Manager DLL , provides a detailed description of the AWE Manager and its functions.

 Windows Programming Guide, provides C examples to let you access and manipulate the
Windows drivers.

PART IV MIDI NRPN Implementation , describes the MIDI NRPN implementation of the SB AWE32.

SB AWE32 MIDI NRPN List , details the Non-Registered Parameter Number implementation
of the SB AWE32 Window MIDI driver.

PART V 3D Positional Audio API, describes the a low-level access to 3D audio algorithms running on
the SB AWE32.

Library Overview , gives a quick look at the 3D Positional Audio API implementation on the
SB AWE32.

SB AWE32 DOS 3D Positional Audio Library, gives an example of using the DOS 3D
Positional Audio Library.

SB AWE32 Developer's Information Pack PART I Introduction •• 7
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Types and Structures, describes the data types and structures used by the 3D Positional Audio
Library.

System Functions, describes the system wide, environment functions.

Emitter Functions, describes the operations on the emitters.

Receiver Functions, describes the operation on the receivers.

Programming Example, gives an example of using the 3D Positional Audio Library.

Document Conventions

To help you locate and identify information easily, this manual uses visual cues and standard text
formats. The following typographical conventions are used throughout this document:

Example Description

bold_letter Bold letters indicate variable names, library functions, or commands. These
are case-sensitive. Bold letters are also used for terms intended as keywords
or for emphasis in certain phrases.

BOLD_CAPS All bold capital letters indicate constants.

NORMAL_CAPS All capital letters indicate file names or directory names.

italics Italic letters represent actual values or values of variables that you are
expected to provide.

program This font is used for example codes.

program Vertical ellipsis in an example program indicate that part of the program has
been intentionally omitted.

 .

 .

fragment

[] Square brackets in a command line indicate that the enclosed item is optional.

< > Angle brackets in a command line indicate that you must provide the actual
value of the enclosed item.

/ A forward slash in a command line indicates an either/or choice.

In this document, "you" refers to you the developer or sometimes your application. The word "user"
refers to the person who uses your application.

SB AWE32 Developer's Information Pack PART I Introduction •• 8
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Getting Assistance

If you have any comments, suggestions, questions, or problems concerning this information pack, please
feel free to contact us. You can reach us at:

CompuServe: GO BLASTER
Internet E-mail address: devsuppt@cthost.ct.creaf.com

What You Need To Know

This manual assumes you are an experienced software developer who is familiar with using Sound
Blaster cards or any of its derivatives. Thus, the focus in this document is on highly technical aspects of
the cards.

This developer information pack supports the following programming tools :

• Microsoft Visual C++ version 1.0 and 1.5

• Microsoft C version 6.0 and 7.0

• Borland C++ version 3.1 and 4.0

• Watcom C/C++32 version 9.5 and 10.0

• MetaWare High C/C++ version 3.2

• Symantec C/C++ version 6.1

The real mode DOS object libraries are available for the following memory models:

• Small

• Compact

• Medium

• Large

A flat model protected mode library is also provided.

Before you proceed to Part II, III and IV of this manual, you need to familiarize yourself with the
hardware functional blocks of the Sound Blaster AWE32 audio card. A diagram of the functional blocks
is provided below.

SB AWE32 Developer's Information Pack PART I Introduction •• 9
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Bus Interface
Chip

Joystick Port

MCU

MIDI Port
(SB &

MPU-401)

16 bit AD/DA

Mixer

EMU8000

Tank DRAM

ROM

DRAM

SIMM Socket

EMU8000 Subsystem

C-BUS

Music
Synthesizer 3D

Stereo
Enh

Power
Amplifier

Line-In

Mic-In

CD-In

Line-Out

Phone-Out

Functional Block Diagram of Sound Blaster AWE32

The EMU8000 subsystem consists of the following parts:

• ROM

The ROM contains 1MB of General MIDI sound samples.

• DRAM

This is the supplied 512 KB of DRAM on Sound Blaster AWE32 and Sound Blaster
AWE32 Value Edition for custom sound samples and GS support.

• SIMM Socket

2 optional SIMM sockets for DRAM expansion. You can expand the on-board DRAM a
maximum of 28 MB by inserting off-the-shelf SIMM modules.

The following lists the I/O ports used by the EMU8000 subsystem :

• 0x6X0 - 0x6X3

SB AWE32 Developer's Information Pack PART I Introduction •• 10
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

• 0xAY0 - 0xAY3

• 0xEZ0 - 0xEZ3

where X, Y, and Z = 2, 4, 6, or 8. They follow the base I/O address of the SB16. This is generally true
for legacy ISA SB AWE32 cards. However, with the introduction of Plug and Play cards, the
relationships between X, Y, and Z, and SB16 may not be true. Please refer to the chapter CTPNP.CFG
Sample for more details.

For a detailed look at the other functional blocks in the diagram, refer to “Developer Kit for Sound
Blaster Series Hardware Programming Reference” documentation from us.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 11
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

PART II DOS Real/Protected Mode
API

Overview

This chapter gives an overview of the DOS object modules and the sample applications. Note that this
chapter does not attempt to cover programming the Sound Blaster. Please refer to “Sound Blaster
Developer Kit for Sound Blaster Series, 2nd Edition” if you need more information on programming the
Sound Blaster.

The object modules are provided in five memory models; SMALL, COMPACT, MEDIUM, LARGE and
FLAT. The object module files are :

MIDIENG.OBJ MIDI engine. Contains all MIDI channel message services.

SYSEX.OBJ SysEx parser

SFHELP1.OBJ SoundFont helper module 1

SFHELP2.OBJ SoundFont helper module 2 shared by SBKLOAD.OBJ and
WAVLOAD.OBJ

EMBED.OBJ General MIDI preset module

MIDIVAR.OBJ MIDI variables, used by all modules

HARDWARE.OBJ EMU8000 hardware initialization module

SBKLOAD.OBJ SoundFont bank loader module

WAVLOAD.OBJ Wave PCM loader module

NRPN.OBJ Non-Registered Parameter Number interpreter.

NRPNVAR.OBJ Data buffers use by Non-Registered Parameter Number interpreter.

HARDWARE.OBJ, SBKLOAD.OBJ, WAVLOAD.OBJ and SFHELP2.OBJ are discardable after they
have been used. For example, in a TSR program, after you have initialized the SB AWE32 hardware and
loaded your SoundFont bank file, you can mark portions of your code that must stay resident (the MIDI
engine, the embedded General MIDI preset data and any SoundFont preset data), and discard the
hardware and the SoundFont loader module.

A sample application is included in this information package.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 12
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Hardware Detection And Initialization

This group of API consists of the following :

• awe32Detect

• awe32DetectEx

• awe32InitHardware

• awe32Terminate

awe32Detect
WORD
PASCAL
awe32Detect(WORD wBaseIOAddx)

Actions Detect the presence of the EMU8000 subsystem.

Parameters wBaseIOAddx

Specify the base I/O address of the EMU8000 subsystem. The address can be found in
the BLASTER environment variable with a 'E' prefix. For example, E620.

The ‘E’ BLASTER environment parameter is introduced to cater for future derivatives
of the SB AWE32 sound card that may have the EMU8000 at different I/O addresses.

Please refer to chapter CTPNP.CFG Sample for details on obtaining base I/O
addresses for SB AWE32 PnP cards.

Return The return value is 0 if the EMU8000 is detected, and non-zero if otherwise.

awe32DetectEx
WORD
PASCAL
awe32DetectEx(

WORD wBaseIOAddx1,
WORD wBaseIOAddx2,
WORD wBaseIOAddx3

)

Actions Detect the presence of the EMU8000 subsystem for systems where the base I/O
addresses set are not 0x400 apart.

Parameters wBaseIOAddx1, wBaseIOAddx2, wBaseIOAddx3

Specifies the base I/O addresses of the EMU8000 subsystem. In Windows 95, the I/O
addresses used can be found in the ‘CTPNP.CFG’ configuration file located in the
Windows directory. Refer to the CTPNP.CFG Sample at the end of this section.

Return The return value is 0 if the EMU8000 is detected, and non-zero if otherwise.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 13
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

awe32InitHardware
WORD
PASCAL
awe32InitHardware(VOID)

Actions Prepare the EMU8000 subsystem for MIDI playback.

Parameters None.

Return Return 0 if the EMU8000 subsystem had been properly initialized, and non-zero if
otherwise.

awe32Terminate
WORD
PASCAL
awe32Terminate(VOID)

Actions Restore the EMU8000 chip to a known state.

Parameters None.

Return Return 0 if the EMU8000 subsystem had been properly terminated, and non-zero if
otherwise.

Remarks The EMU8000 will be initialized to process FM audio. The FM initialization has a
tight timing loop. It is recommended that all interrupts are disabled before calling
awe32Terminate .

MIDI Services

This group of API consists of the following :

• awe32InitMIDI

• awe32InitNRPN

• awe32NoteOn

• awe32NoteOff

• awe32ProgramChange

• awe32PitchBend

• awe32Controller

• awe32ChannelPressure

• awe32PolyKeyPressure

• awe32Sysex

• __awe32NoteOff

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 14
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

• __awe32IsPlaying

awe32InitMIDI
WORD
PASCAL
awe32InitMIDI(VOID)

Actions Initialize MIDI engine. It resets all controller values and prepares for subsequent
MIDI engine calls.

Parameters None.

Return The return value is 0 if the initialization is successful, non-zero if otherwise.

awe32InitNRPN
WORD
PASCAL
awe32InitNRPN(VOID)

Actions Initialize the data buffer used for NRPN and to link in the NRPN.OBJ and
NRPNVAR.OBJ modules.

Parameters None.

Return Return 0 upon successful initialization, and non-zero if otherwise.

Remark NRPN is not supported for SoundFont2 library.

awe32NoteOn
WORD
PASCAL
awe32NoteOn(

WORD wMIDIChannel,
WORD wNoteNumber,
WORD wVelocity

)

Actions Turn on a MIDI note.

Parameters wMIDIChannel

Specify from which MIDI channel the note on originated. Valid range for this variable
is from 0 to 15 decimal.

wNoteNumber

Specify the MIDI note number. Valid range for this variable is from 0 to 127.

wVelocity

Specify the MIDI note's velocity. Valid range for this variable is from 0 to 127.

Return The return value is 0 if the MIDI note on is successful, non-zero if otherwise.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 15
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks To prevent note stealing, especially for lengthy special effects, add 16 to the channel
number. Care must be taken to issue a corresponding note-off with the same channel
number.

awe32NoteOff
WORD
PASCAL
awe32NoteOff(

WORD wMIDIChannel,
WORD wNoteNumber,
WORD wVelocity

)

Actions Turn off a MIDI note.

Parameters wMIDIChannel

Specify from which MIDI channel the note off originated. Valid range for this variable
is from 0 to 15 decimal.

wNoteNumber

Specify the MIDI note number. Valid range for this variable is from 0 to 127.

wVelocity

Specify the MIDI note's velocity. Valid range for this variable is from 0 to 127.

Return The return value is 0 if the MIDI note off is successful, non-zero if otherwise.

awe32ProgramChange
WORD
PASCAL
awe32ProgramChange(

WORD wMIDIChannel,
WORD wProgram

)

Actions Select a program.

Parameters wMIDIChannel

Specify from which MIDI channel the program change originated. Valid range for this
variable is from 0 to 15 decimal.

wProgram

Specify the desired program value. Valid range for this variable is from 0 to 127.

Return The return value is 0 if the MIDI program change is successful, non-zero if otherwise.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 16
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

awe32PitchBend
WORD
PASCAL
awe32PitchBend(

WORD wMIDIChannel,
WORD wLSB,
WORD wMSB

)

Actions Pitch bend all notes sounding in a MIDI channel.

Parameters wMIDIChannel

Specify from which MIDI channel the pitch bend originated. Valid range for this
variable is from 0 to 15 decimal.

wLSB

Specify the MIDI pitch bend LSB data value. Valid range for this variable is from 0 to
127.

wMSB

Specify the MIDI pitch bend MSB data value. Valid range for this variable is from 0
to 127.

Return The return value is 0 if the MIDI pitch bend is successful, non-zero otherwise.

awe32Controller
WORD
PASCAL
awe32Controller(

WORD wMIDIChannel,
WORD wControlNumber,
WORD wControlData

)

Actions Controller change on a MIDI channel.

Parameters wMIDIChannel

Specify from which MIDI channel the note on originated. Valid range for this variable
is from 0 to 15 decimal.

wControlNumber

Specify the MIDI controller number. Valid range for this variable is from 0 to 127.

wControlData

Specify the MIDI controller's data value. Valid range for this variable is from 0 to
127.

Return The return value is 0 if the MIDI control change is successful, non-zero if otherwise.

Remarks Supported controllers are:

• CC0 Bank Select

• CC1 Modulation Wheel

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 17
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

• CC6 Data Entry MSB

• CC7 Master Volume

• CC10 Pan Position

• CC11 Expression

• CC38 Data Entry LSB

• CC64 Sustain Pedal

• CC91 Effects Depth (Reverb)

• CC93 Chorus Depth

• CC98 Non-Registered Parameter Number LSB

• CC99 Non-Registered Parameter Number MSB

• CC100 Registered Parameter Number LSB

• CC101 Registered Parameter Number MSB

• CC120 All Sound Off

• CC121 Reset All Controllers

• CC123 All Notes Off

RPN recognizes controller value 0 (pitch-bend sensitivity). Reset All Controllers
resets the following:

• Pitch Wheel

• Modulation Wheel

• Expression (CC11)

• Sustain Pedal (CC64)

• Channel Pressure

• Non-Registered Parameter Numbers

awe32ChannelPressure
WORD
PASCAL
awe32ChannelPressure(

WORD wMIDIChannel,
WORD wData

)

Actions MIDI Channel Pressure.

Parameters wMIDIChannel

Specify from which MIDI channel the channel pressure originated. Valid range for this
variable is from 0 to 15 decimal.

wData

Specify the channel pressure data value. Valid range for this variable is from 0 to 127.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 18
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Return This function will return 0 if successful, and non-zero if otherwise.

awe32PolyKeyPressure
WORD
PASCAL
awe32PolyKeyPressure(

WORD wMIDIChannel,
WORD wNoteNumber,
WORD wData

)

Actions None.

Parameters wMIDIChannel

Specify from which MIDI channel the polyphonic key pressure originated. Valid range
for this variable is from 0 to 15 decimal.

wNoteNumber

Specify the MIDI note number. Valid range for this variable is from 0 to 127.

wData

Specify the polyphonic key pressure data value. Valid range for this variable is from 0
to 127.

Return This function will always return 0.

Remarks This function is a dummy place holder and does not do anything in its main body. It is
provided for MIDI compatibility purposes.

awe32Sysex
WORD
PASCAL
awe32Sysex(

WORD wMIDIChannel,
LPBYTE lpSysexBuffer,
WORD wBufferSize

)

Actions MIDI Sysex command

Parameters wMIDIChannel

Specify from which MIDI channel the Sysex originated. Valid range for this variable
is from 0 to 15 decimal.

lpSysexBuffer

Specify a far byte pointer to a string of Sysex data.

wBufferSize

Specify the size of the Sysex buffer.

Return The return value is 0 if the MIDI Sysex command is successful, non-zero if otherwise.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 19
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks This current API recognizes the Sysex message switching Reverb/Chorus effects
variation.

Reverb Sysex macro :

F0 41 10 42 12 40 01 30 XX CS F7

where XX denotes the Reverb variation to be selected, and CS denotes a checksum
value that is not verified. The valid values for XX are

0 - Room 1

1 - Room 2

2 - Room 3

3 - Hall 1

4 - Hall 2

5 - Plate

6 - Delay

7 - Panning Delay

Chorus Sysex macro

F0 41 10 42 12 40 01 38 XX CS F7

again, XX denotes the chorus variation to be selected, and CS notes a checksum value
that is not verified. The valid values for XX are :

0 - Chorus 1

1 - Chorus 2

2 - Chorus 3

3 - Chorus 4

4 - Feedback chorus

5 - Flanger

6 - Short Delay

7 - Short delay (FB)

__awe32NoteOff
WORD
PASCAL
__awe32NoteOff(

WORD wMIDIChannel,
WORD wBank,
WORD wPreset,
WORD wNote

)

Actions Turn off a MIDI note. You would use this function to turn off a specific user bank
note.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 20
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Parameters wMIDIChannel

Specify from which MIDI channel the note off originated. Valid range for this variable
is from 0 to 15 decimal.

wBank

Specify the user bank the note originated from. Valid range for this variable is from 0
to 127.

wPreset

Specify the note’s preset number. Valid range for this variable is from 0 to 127.

wNote

Specify the note’s note number. Valid range for this variable is from 0 to 127.

Return The return value is 0 if the MIDI note off is successful, non-zero if otherwise.

__awe32IsPlaying
BOOL
PASCAL
__awe32IsPlaying(

WORD wMIDIChannel,
WORD wBank,
WORD wPreset,
WORD wNote

)

Actions Check if a MIDI note is still playing.

Parameters wMIDIChannel

Specify from which MIDI channel the note off originated. Valid range for this variable
is from 0 to 15 decimal.

wBank

Specify the user bank the note originated from. Valid range for this variable is from 0
to 127.

wPreset

Specify the note’s preset number. Valid range for this variable is from 0 to 127.

wNote

Specify the note’s note number. Valid range for this variable is from 0 to 127.

Return The return value is TRUE if the note is still playing, FALSE otherwise.

SoundFont Bank And Downloadable DRAM Services

This chapter gives an overview of the SoundFont Bank and WAVE file loading API. You will typically
use these API when you want to customize the MIDI instruments and sound effects in your application.

These API use the following data structures :

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 21
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

typedef struct {
 SHORT bank_no; /* Slot number being used */
 SHORT total_banks; /* Total number of banks */
 LONG FAR* banksizes; /* Pointer to a list of bank sizes */
 LONG reserved; /* Unused */
 char FAR* data; /* Address of buffer of size PACKETSIZE */
 char FAR* presets; /* Allocated memory for preset data */

 LONG total_patch_ram; /* Total patch ram available */
 SHORT no_sample_packets;/* No. of packets of samples to stream */
 LONG sample_seek; /* Start file location of sound sample */
 LONG preset_seek; /* Address of preset_seek location */
 LONG preset_read_size; /* No. of bytes from preset_seek to */
 /* read into a buffer */
 LONG preset_size; /* Preset actual size */
} SOUND_PACKET;

typedef struct {
 SHORT tag; /* Must be 0x100 or 0x101 */
 SHORT preset_size; /* Preset table of this size is required */
 SHORT no_wave_packets;/* No. of packets of Wave sample */
 LONG reserved;

 SHORT bank_no; /* Bank number */
 char FAR* data; /* Address of packet of size PACKETSIZE */
 char FAR* presets; /* Allocated memory for preset data */
 LONG sample_size; /* Sample size, i.e. number of samples */
 LONG samples_per_sec; /* Samples per second */
 SHORT bits_per_sample; /* Bits per sample, 8 or 16 */
 SHORT no_channels; /* Number of channels, 1=mono, 2=stereo */
 SHORT looping; /* Looping? 0=no, 1=yes */
 LONG startloop; /* If looping, these addresses */
 LONG endloop;
 SHORT release; /* Release time, 0=24ms, 8191=23.78s */
} WAVE_PACKET;

SOUND_PACKET data structure is used in API that involve loading and unloading of SoundFont bank
data objects.

WAVE_PACKET data structure provides WAVE loading functionality on top of SOUND_PACKET data
structure.

awe32TotalPatchRam
WORD
PASCAL
awe32TotalPatchRam(SOUND_PACKET FAR* SP)

Actions Determine the total amount of RAM on the AWE32. This is not the amount of “unused”
RAM but the total amount of RAM. awe32TotalPatchRam assumes the AWE32 card
has been detected and initialized.

Parameters SP

Points to the SOUND_PACKET. awe32TotalPatchRam assumes that SP is not
NULL .

Return If successful, awe32TotalPatchRam returns zero; otherwise, it returns non-zero. The
following fields of SP will filled upon successful return from this API.

Member Remarks
total_patch_ram The total amount of RAM on the SB AWE32 card.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 22
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

awe32DefineBankSizes
WORD
PASCAL
awe32DefineBankSizes(SOUND_PACKET FAR* SP)

Action Divide the AWE32’s RAM into banks. All previous bank divisions are forgotten. You
would normally invoke this API at the beginning of your application.

Parameters SP

Points to the SOUND_PACKET data object in which the size of each bank and the
number of banks is specified. awe32DefineBankSizes assumes SP is not NULL .

Member Remarks
total_banks The total number of banks that will be used. This is also the

number of elements in SP->banks[]. The number of banks
may range from 1 to 64.

banksizes[] The sizes of the banks are in SP->banksizes[]; the number of
banks is in SP->total_banks. SP->banksizes[0] through SP-
>banksizes[SP->total_banks-1] are used to define the bank
sizes. The sum of all the bank sizes must be less than or equal
to the total amount of patch RAM (which may be obtained by
calling awe32TotalPatchRam).

The AWE32 uses only 16-bit samples internally; all 8-bit sample data are converted
to 16-bit by the library. Also, each bank requires 160 bytes of overhead for internal
storage. So the bank memory required for a single sound is 160 bytes plus two bytes
for every sample in the sound, regardless of whether the sound is composed of 8-bit
samples or 16-bit samples.

That is, the bank memory required is

(2 bytes) * number_of_samples + 160 bytes

For example, the bank memory required for a WAV file of 10000 bytes of 16-bit
samples is (10000 + 160 = 10160 bytes). The bank memory required by a WAV file of
15000 bytes of 8-bit samples is (2 bytes * 15000 + 160 = 30160 bytes).

The bank memory required for a SoundFont bank file that does not contain samples is
simply 0 byte.

Return If successful, awe32DefineBankSizes returns zero; otherwise, it returns non-zero.

awe32SFontLoadRequest
WORD
PASCAL
awe32SFontLoadRequest(SOUND_PACKET FAR* SP)

Actions Parse the SoundFont bank header and prepares the specified SOUND_PACKET to
download a SoundFont bank.

Parameters SP

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 23
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Points to the SOUND_PACKET data object in which the bank number, the SoundFont
file size, and the memory buffer are specified. awe32SFontLoadRequest assumes SP
is not NULL.

Member Remarks
bank_no The bank number into which a SoundFont file will be loaded.

data Points to the buffer where the first PACKETSIZE bytes of
SoundFont file are read.

Return If successful, awe32SFontLoadRequest returns zero; otherwise, it returns non-zero.
The following fields of SP will filled upon successful return from this API.

Member Remarks
sample_seek The offset in the SoundFont bank file where the instrument

samples are stored. The application must seek to this position
before it begins a read and awe32StreamSample loop.

no_sample_packets The number of packets of PACKETSIZE bytes, each, that
must be read and passed to awe32StreamSample.

preset_seek The offset in the SoundFont bank file where the preset data are
stored. The application must seek to this position before reading
the preset data.

preset_read_size This number of bytes the client should read for the presets.

Remarks The function requires that the entire SoundFont bank header be read into the buffer. In
Real mode libraries, the size of the buffer is 512 bytes. If the size of the header is
larger than 512 bytes, awe32SFontLoadRequest will fail. This could happen with
SoundFont banks created with Vienna SF Studio. It is because Vienna allows users to
insert a comment field in the header. If the field is long, the could be larger than 512
bytes. Please restrict the comment field to less than 128 characters long.

awe32StreamSample
WORD
PASCAL
awe32StreamSample(SOUND_PACKET FAR* SP)

Action For each call, awe32StreamSample loads one packet of SoundFont bank instrument
samples into a bank. awe32SFontLoadRequest must be used before calling
awe32StreamSample.

Parameters SP

Points to the SOUND_PACKET in which the bank number, the size of the SoundFont
file, and the memory buffer are specified. awe32StreamSample assumes SP is not
NULL .

Member Remarks
bank_no The bank number into which a SoundFont file will be loaded.

data Points to the buffer that contains PACKETSIZE bytes of
SoundFont data.

Return If successful, awe32StreamSample returns zero; otherwise, it returns non-zero.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 24
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

awe32SetPresets
WORD
PASCAL
awe32SetPresets(SOUND_PACKET FAR* SP)

Action Use the specified presets (in SP->presets) for the specified SoundFont bank (in SP-
>bank_no). Until the awe32Terminate function is called or the presets are reset with
awe32ReleaseBank, the library will continue to use the memory block pointed to by
SP->presets.

Parameters SP

Points to the SOUND_PACKET in which the bank number, and the memory buffer are
specified. awe32SetPresets assumes SP is not NULL .

Member Remarks
bank_no The bank number for which these presets will be set.

presets Points to the buffer in which the presets are stored. The buffer
should be at least SP->presets_read_size bytes in length. (SP-
>presets_read_size is set by calling
awe32SFontLoadRequest). The library will continue to use
this memory for the SoundFont bank, so you must not free it
unless the library is terminated with awe32Terminate or the
presets are reset with a call to awe32ReleaseBank.

Return If successful, awe32SetPresets returns zero; otherwise, it returns non-zero. The
following fields of SP will filled upon successful return from this API.

Member Remarks
preset_size The actual size required in SP->presets. This will not be more

than the value in SP->preset_read_size; typically, it will be
about 30 percent smaller. The client may resize the presets
memory block if the location of the block does not change.
(The Standard C library function, realloc, may move a block to
resize it, so realloc is not suitable for resizing the presets
block.)

awe32ReleaseBank
WORD
PASCAL
awe32ReleaseBank(SOUND_PACKET FAR* SP)

Action Mark the memory being used for presets by the bank as free and makes the bank
unusable. Applications are responsible for freeing any allocated memory buffers.
Attempting to play a patch from the released bank results in undefined behavior.

Parameters SP

Points to the SOUND_PACKET in which the bank number is specified.
awe32ReleaseBank assumes SP is not NULL .

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 25
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Member Remarks
bank_no The bank number to be released.

Return If successful, awe32ReleaseBank returns zero, otherwise, it returns non-zero.

awe32ReleaseAllBanks
WORD
PASCAL
awe32ReleaseAllBanks(SOUND_PACKET FAR* SP)

Action Call the awe32ReleaseBank for each bank..

Parameters SP

Points to the SOUND_PACKET data object. SP is not used and is meant as a place-
holder.

Return If successful, awe32ReleaseAllBanks returns zero; otherwise, it returns non-zero.

awe32WPLoadRequest
WORD
PASCAL
awe32WPLoadRequest(WAVE_PACKET FAR* WP)

Action Prepare the specified WAVE_PACKET to load wave data (PCM samples) into a
specified bank. The wave data is later load into the bank by calling
awe32WPStreamWave, or awe32WPLoadWave. So the wave data may reside in a
file, memory, or any other place; the client has the responsibility of retrieving the data.

Parameters WP

Points to the WAVE_PACKET. awe32WPLoadRequest assumes WP is not NULL .

Member Remarks
bank_no The bank number into which the wave data will be loaded.

sample_size Size of wave data in number of samples.

no_channels The number of channels in the wave data. 1 is mono and 2 is
stereo. Only mono (1) is supported.

bits_per_sample The number of bits per sample. 8 and 16 bits samples are
supported.

tag Current version number of WAVE_PACKET. Must be 0x101.

Return If successful, awe32WPLoadRequest returns zero; otherwise, it returns non-zero. In
addition, values are returned in some fields of WAVE_PACKET object.

Member Remarks
no_wave_packets The number of wave packets of PACKETSIZE bytes, each,

that must be passed to awe32WPStreamWave; if it is used.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 26
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

preset_size The number of bytes required by the library for presets for the
bank. Allocate this much memory for this purpose.

awe32WPLoadWave
WORD
PASCAL
awe32WPLoadWave(WAVE_PACKET FAR* WP)

Action Load all of the wave data into a bank. Use this function instead of repeatedly calling
awe32WPStreamWave when all the sound data can fit in a single block of memory.
(In Real mode, the sound data must be less than 64 KB long.)

Parameters WP

Points to the WAVE_PACKET. awe32WPLoadWave assumes WP is not NULL .

Member Remarks
data Points to the sample data.

bits_per_sample The wave data resolution (number of bits per sample) of the
sample object. This should have the same value as it did when
awe32WPLoadRequest was called.

Return If successful, awe32WPLoadWave returns zero; otherwise, it returns non-zero.

awe32WPStreamWave
WORD
PASCAL
awe32WPStreamWave(WAVE_PACKET FAR* WP)

Action Load one packet of wave data into the specified bank.

Parameters WP

Points to the WAVE_PACKET. awe32WPStreamWave assumes WP is not NULL .
The fields in the WAVE_PACKET should have the same values they did when
previous call to awe32WPLoadRequest returned.

Member Remarks
bank_no The bank number to which the wave data will be loaded.

data Points to the wave data buffer of PACKETSIZE bytes.

bits_per_sample The wave data resolution (number of bits per sample) of the
sample object. This should have the same value as it did when
awe32WPLoadRequest was called.

Return If successful, awe32WPStreamWave returns zero; otherwise, it returns non-zero.

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 27
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

awe32WPBuildSFont
WORD
PASCAL
awe32WBuildSFont(WAVE_PACKET FAR* WP)

Action Construct a SoundFont preset object for the download wave data. In effect the wave
data becomes an instrument in the specified bank.

Parameters WP

Points to the WAVE_PACKET. awe32WPBuildSFont assumes WP is not NULL .

Member Remarks
bank_no The bank number into which the wave data will be loaded.

tag Current version number of WAVE_PACKET. This value must
be the same value that was present when
awe32WPLoadRequest and awe32WPStreamWave were
called.

sample_size Holds the number of samples in the sample object. This must
be the same value that was present when
awe32WPLoadRequest and awe32WPStreamWave were
called.

samples_per_sec Holds the frequency of the wave data. Supported frequencies
are 8000Hz, 11025Hz, 22050Hz, and 44100Hz.

looping Holds zero if there is no loop in the sample. Otherwise, holds
non-zero and the start and end of the loop as offsets into the
WAVE data are specified in WP->startloop and WP-
>endloop, respectively.

release Specify the duration of the release section of the sample. Zero
causes a release duration of 24 milliseconds; 5940, 23.78
seconds. Values higher than 5940 are treated as 5940.

presets Points to a block of memory the library may use for holding
presets. The block of memory must be at least WP-
>preset_size bytes in length. (This length was obtained by
calling awe32WPLoadRequest).

Return If successful, awe32WPBuildSFont returns zero; otherwise, it returns non-zero.

Real and Protected Mode API Programming Guide

This chapter gives a general guide in using the DOS Real and Protected mode API. This chapter consists
of 10 sections:

• Using the libraries

• Initialization

• Termination

• Using embedded GM presets

• Loading a SoundFont Bank

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 28
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

• Loading wave data as an instrument

• Using awe32DefineBankSizes

• Starting and ending addresses

• Significance of awe32NumG variable

• Enable real-time panning using awe32RTimePan variable

Using the libraries
A header file CTAWEAPI.H for C/C++ compilers is included in this package. The libraries are
provided in 2 formats: OBJ and LIB files. Libraries of 5 memory models are provided:

• Small memory model

• Compact memory model

• Medium memory model

• Large memory model

• Flat memory model (protected mode)

Please note that all libraries are compiled using structure members alignment of 1. For flat memory
model library, the FAR keyword has been defined away, LPBYTE is the same as PBYTE.

Initialization
The SB AWE32 EMU8000 subsystem must be properly initialized prior to any MIDI playback. Two
steps are required for initialization as shown below. The first example assumes that the base I/O
addresses of the EMU8000 subsystem is at 0x620 and are spaced 0x400 apart.

wEmuBase = 0x620;
if (awe32Detect(wEmuBase)) {

// Error, EMU8000 not found
}
else {

if (awe32InitHardware()) {
// Error, initialising EMU8000 failed

}
}

The next example assumes that the base I/O addresses of the EMU8000 subsystem is at 0x620 but are not
spaced 0x400 apart. Refer to the CTPNP.CFG Sample at the end of this section for more details on
getting the base I/O addresses.

wEmuBase[0] = 0x620;
wEmuBase[1] = 0x624;
wEmuBase[2] = 0x628;
if (awe32DetectEx(wEmuBase[0], wEmuBase[1], wEmuBase[2])) {

// Error, EMU8000 not found
}
else {

if (awe32InitHardware()) {
// Error, initialising EMU8000 failed

 }
}

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 29
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Termination
The SB AWE32 EMU8000 subsystem must be properly terminated when your application wishes to quit.
Failure to do so may render any subsequent playing of FM music inaudible.

if (awe32Terminate()) {
// Error, termination failed

}

Using embedded GM presets
General MIDI presets are included in this package, EMBED.OBJ. In order to embed the presets, you
need to initialize the awe32SoundPad structure as shown below :

awe32SoundPad.SPad1 = awe32SPad1Obj;
awe32SoundPad.SPad2 = awe32SPad2Obj;
awe32SoundPad.SPad3 = awe32SPad3Obj;
awe32SoundPad.SPad4 = awe32SPad4Obj;
awe32SoundPad.SPad5 = awe32SPad5Obj;
awe32SoundPad.SPad6 = awe32SPad6Obj;
awe32SoundPad.SPad7 = awe32SPad7Obj;

if (awe32InitMIDI()) {
// Error, MIDI engine initialisation failed

}

The awe32SoundPad is of type SOUNDPAD and is defined in MIDIVAR.OBJ, and the
awe32SPadXObj variables are defined in EMBED.OBJ.

awe32SoundPad has to be initialized before calling awe32InitMIDI . The General MIDI presets will be
setup as Bank 0 and uses the ROM samples.

Loading a SoundFont Bank
There are several steps involved. For example, to load a User Bank.

#include “ctaweapi.h”

int i;
FILE *fp;
LONG banks[1];
SOUND_PACKET sp;
char buffer[PACKETSIZE];

// Determine available patch DRAM
awe32TotalPatchRam(&sp);
if (sp.total_patch_ram < 512*1024) {

// Error, not enough patch DRAM
}

// Setup bank sizes
banks[0] = sp.total_patch_ram; // Use all available ram,
sp.banksizes = banks; // could be less
sp.total_banks = 1; // Total no. of banks
if (awe32DefineBankSizes(&sp)) {

// Error, invalid sizes
}

// Open SoundFont Bank
fp = fopen(“USER.SBK”, “rb”);
fread(buffer, 1, PACKETSIZE, fp); // Read SoundFont header

// Prepare to load SoundFont Bank

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 30
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

sp.bank_no = 0; // Load into bank 0
sp.data = buffer; // Packet buffer
if (awe32SFontLoadRequest(&sp)) {

// Error, invalid SoundFont bank
}

// To stream sound sample
if (sp.no_sample_packets > 0) {

fseek(fp, sp.sample_seek, SEEK_SET);
for (i=0; i<sp.no_sample_packets; i++) {

fread(buffer, 1, PACKETSIZE, fp);
awe32StreamSample(&sp);

}
}

// To load presets
sp.presets = (char *) malloc(sp.preset_read_size);
fseek(fp, sp.preset_seek, SEEK_SET);
fread(sp.presets, 1, sp.preset_read_size, fp);
if (awe32SetPresets(&sp)) {

// Error, invalid SoundFont bank
}

if (awe32InitMIDI()) {
// Error, MIDI engine initialization failed

}

It is recommended that synthesizer SoundFont bank such as SYNTHGM.SBK loads as Bank 0.

Loading wave data as an instrument
The steps are similar to those of loading a SoundFont bank except that WAVE_PACKET functions are
used.

#include “ctaweapi.h”

int i;
FILE *fp;
LONG banks[2];
WAVE_PACKET wp;
SOUND_PACKET sp;
char buffer[PACKETSIZE];

// Embed GM presets
awe32SoundPad.SPad1 = awe32SPad1Obj;
awe32SoundPad.SPad2 = awe32SPad2Obj;
awe32SoundPad.SPad3 = awe32SPad3Obj;
awe32SoundPad.SPad4 = awe32SPad4Obj;
awe32SoundPad.SPad5 = awe32SPad5Obj;
awe32SoundPad.SPad6 = awe32SPad6Obj;
awe32SoundPad.SPad7 = awe32SPad7Obj;

// Determine available patch DRAM
awe32TotalPatchRam(&sp);
if (sp.total_patch_ram < 512*1024) {

// Error, not enough patch DRAM
}

// Setup bank sizes
banks[0] = 0; // Embeded GM presets
banks[1] = sp.total_patch_ram; // Use all available ram,
sp.banksizes = banks; // could be less
sp.total_banks = 2; // Total no. of banks
if (awe32DefineBankSizes(&sp)) {

// Error, invalid sizes
}

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 31
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

// Open wave data
fp = fopen(“WAVE.PCM”, “rb”);

// Prepare to load wave data
wp.tag = 0x101; // Tag
wp.bank_no = 1; // Load into bank 1
wp.data = buffer; // Packet buffer
wp.sample_size = 10240; // 10240 samples
wp.samples_per_sec = 22050; // 22050 Hz
wp.bits_per_sample = 8; // 8-bit sample
wp.no_channels = 1; // Mono sample
wp.looping = 1; // Looping on
wp.startloop = 0; // Loop from beginning
wp.endloop = 10240; // To the end
wp.release = 0; // Immediate release
if (awe32WPLoadRequest(&wp)) {

// Error, cannot use specified wave data
}

// To stream wave data
// See also awe32WPLoadWave
for (i=0; i<wp.no_wave_packets; i++) {

fread(buffer, 1, PACKETSIZE, fp);
awe32WPStreamWave(&wp);

}

// To build SoundFont presets
wp.presets = (char *) malloc(wp.preset_size);
if (awe32WPBuildSFont(&wp)) {

// Error, cannot build SoundFont presets
}

if (awe32InitMIDI()) {
// Error, MIDI engine initialization failed

}

Using awe32DefineBankSizes
Beside defining bank sizes, awe32DefineBankSizes can in the following ways:

• To resize an existing bank. However, the bank to be resized has to be the last bank.

• To define additional banks. The new banks have to be added beyond the last bank.

Assume that the RAM on the SB AWE32 is divided into 3 banks of 128 kilobytes each.

LONG banks[4]; /* reserve for 4 banks */
SOUND_PACKET sp;
.
.
banks[0] = 128000;
banks[1] = 128000;
banks[2] = 128000;
sp.total_banks = 3;
sp.banksizes = banks;
if (awe32DefineBankSizes(&sp)) {

// Error, invalid sizes
}

The last bank can be resized by calling awe32DefineBankSizes.

banks[2] = 150000; /* new size */
sp.total_banks = 3;
sp.banksizes = banks;
if (awe32DefineBankSizes(&sp)) {

// Error, invalid sizes

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 32
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

}

An additional bank can be added beyond the last bank.

banks[3] = 64000; /* new bank */
sp.total_banks = 4;
sp.banksizes = banks;
if (awe32DefineBankSizes(&sp)) {

// Error, invalid sizes
}

In order to resize other banks, the bank(s) beyond the bank to be resized must be freed first by calling
awe32ReleaseBank.

Starting and ending addresses
The starting and ending addresses for code and data segments of all the module files are marked.

Module Start / End Symbols

MIDIENG.OBJ CODE Start __midieng_code()

CODE End __midieng_ecode()

DATA Start int* __midieng_code()

DATA End int* __midieng_ecode()

SYSEX.OBJ CODE Start __sysex_code()

CODE End __sysex_ecode()

DATA Start int* __sysex_code()

DATA End int* __sysex_ecode()

HARDWARE.OBJ CODE Start __hardware_code()

CODE End __hardware_ecode()

DATA Start int* __hardware_code()

DATA End int* __hardware_ecode()

SFHELP1.OBJ CODE Start __sfhelp1_code()

CODE End __sfhelp1_ecode()

DATA Start int* __sfhelp1_code()

DATA End int* __sfhelp1_ecode()

SFHELP2.OBJ CODE Start __sfhelp2_code()

CODE End __sfhelp2_ecode()

DATA Start int* __sfhelp2_code()

DATA End int* __sfhelp2_ecode()

SBKLOAD.OBJ CODE Start __sbkload_code()

CODE End __sbkload_ecode()

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 33
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

DATA Start int* __sbkload_code()

DATA End int* __sbkload_ecode()

WAVLOAD.OBJ CODE Start __wavload_code()

CODE End __wavload_ecode()

DATA Start int* __wavload_code()

DATA End int* __wavload_ecode()

NRPN.OBJ CODE Start __nrpn_code()

CODE End __nrpn_ecode()

DATA Start int* __nrpn_code()

DATA End int* __nrpn_ecode()

MIDIVAR.OBJ DATA Start __midivar_data

DATA End __midivar_edata

NRPNVAR.OBJ DATA Start __nrpnvar_data

DATA End __nrpnvar_edata

EMBED.OBJ DATA Start __embed_data

DATA End __embed_edata

For applications that require the starting and ending addresses of each file module, they can be obtained
as follows:

// midieng.obj
void* code_start = (void*) __midieng_code;
void* code_end = (void*) __midieng_ecode;
void* data_start = (void*) __midieng_code();
void* data_end = (void*) __midieng_ecode();

For users who are developing drivers that make use of hardware interrupts in protected mode, all
modules except HARDWARE.OBJ and SBKLOAD.OBJ and any additional preset buffers must be page
locked. If NRPN is not used, NRPN.OBJ and NRPNVAR.OBJ can be omitted.

Significance of awe32NumG variable
If you intend to use only the ROM (i.e., General MIDI) instruments, you can set awe32NumG to 32 and
you will be using the full 32 oscillators on the EMU8000 subsystem.

If you plan to use both ROM sound and DRAM instruments/sound effects, or instruments/sound effects
from DRAM only, you have to set awe32NumG to 30, i.e., using only 30 oscillators on the EMU8000
subsystem. The remaining 2 oscillators have to be used for DRAM memory refresh. Failure to do so may
result in the DRAM sound being playback incorrectly.

Enable real-time panning using awe32RTimePan variable
If you intend to use real-time panning, you could now enable it by setting awe32RTimePan to 1. The
option is disabled by default because of the limitation in the EMU8000 hardware. The left and right
volumes are not interpolated in real-time. As a result, if the pan positions are updated in real-time,

SB AWE32 Developer's Information Pack PART II DOS Real/Protected Mode API •• 34
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

zippering noise could be heard. However, you can reduce the zippering noise by update the pan positions
in smaller steps.

CTPNP.CFG Sample

This chapter gives a sample of a typical CTPNP.CFG configuration file in Windows 95, which contains
information about the hardware configuration. The file is found in the Windows directory and can be
read to obtain the base I/O addresses for the EMU8000 sybsystem.

The file is introduced because the relationships between the 3 EMU8000 I/O windows and SB16 base
I/O address may not be true for the SB AWE32 PnP card. In fact, even the 3 EMU8000 I/O windows
themselves may not be related at all, i.e. not 0x400 apart. The Plug and Play Configuration Manager may
choose to assign any I/O windows to the SB AWE32 PnP card and hence breaking all the relationships
of a typical legacy ISA card. As a result, the device detection based on the 'E' paramter in the BLASTER
environment string is not reliable.

Creative's Windows 95 sound drivers (version 4.10 and above) have been modified to write their
hardware configurations to CTPNP.CFG file as shown below. The 3 EMU8000 I/O windows can be
obtained from the file and pass them to the awe32DetectEx function to verify the presence of the device.

[SB16]
Csn=1
LogDev=0
CardId=CTL0041
Serial=0000001B
Port0=240
Port1=300
Port2=0
Irq0=10
Dma0=3
Dma1=7

[PNP]
Readport=273

[AWE]
CardId=CTL0041
Serial=0000001B
Csn=1
LogDev=3
Port0=640
Port1=A40
Port2=E40

The EMU8000 subsystem configuration is contained in the [AWE] section. The Port0, Port1 and Port2
keywords give the base I/O addresses of the EMU8000 subsystem. Refer to the sample demo program
for reading the port information from ths file.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 35
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

PART III Windows Driver API

Overview

AWEMAN.DLL is a resource (effects microcode and user samples) manager. There are two types of
resources, effects microcode and user samples. Download requests for effects microcode or user
samples can be initiated by the user application that uses AWE Manager's API. When an effect is being
selected by the user, AWE Manager will relay the request to the SBAWE32.DRV driver. This driver
will download the required effect microcodes into the AWE32. The diagram below depicts the
relationships of the libraries and drivers for the Sound Blaster AWE32.

Windows Application Control Panel

MMSYSTEM AWE Manager

SBAWE32 MIDI Driver
Registration
Database

Sound Blaster AWE32 Hardware

There are 16bit and 32bit (Windows NT) versions of SBAWE32.DRV to accommodate different
applications in different platform. AWE Manager also supports both versions: AWEMAN.DLL for
Win16 and AWEMAN32.DLL for Win32. The previous diagram shows the architecture which is
common to both platform.

AWEMAN.DLL contains API services which can be used by any 16bit applications running in Windows
3.1x or Windows 95 environment. AWEMAN32.DLL, on the other hand, supports 32bit applications
running in Windows 95 or Windows NT 3.5x. The following diagram shows the relationship between
AWEMAN.DLL and AWEMAN32.DLL when they are used in Windows 95.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 36
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

16-bit
Windows Application

AWE32
Control
Panel

AWEMAN.DLL AWEMAN32.DLL

SBAWE32 MIDI
Registration
Database

Sound Blaster AWE32 Hardware

(e.g. 16 bit Vienna SF Studio)

AWE16
Control
Panel

32-bit
Windows Application

(e.g. 32 bit Vienna SF Studio)

AWEMAN32.DLL thunks from 32 bit to 16 bit in order to relay requests to SBAWE32.DRV.
AWEMAN.DLL, however communicates with the driver directly.

Application Programmer Interface
The current implementation of API is via message-based system (different from Windows' WM_USER).
The API provides parent applications with a set of messages, accessing the features of AWE32. The API
exports one function call AWEManager. Applications communicate to AWEMAN.DLL through this
function using the pre-defined messages. Each message will trigger different functions in
AWEMAN.DLL.

AWE Manager DLL

This section describes the specifications of the Windows API. Applications should use messages
describe in this chapter to interact with the SBAWE32.DRV.

This section is divided into four areas:

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 37
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

• AWE Manager Message Function

• AWE Manager Messages

• AWE Manager Message Reference

• AWE Manager Error Messages

The first section describes how to gain access to the AWE Manager entry point function. The second
section gives a quick and brief description of what the AWE Manager DLL offers. The third section
takes a deeper view into the message functions. The fourth section explains anticipated error messages.

In this chapter, AWE Manager DLL is also referenced as DLL or AWE Manager. And it could refer to
either AWEMAN.DLL or AWEMAN32.DLL.

AWE Manager message function
AWEMAN.DLL provides a single message-based function entry point. This function has the following
prototype:

LRESULT
FAR PASCAL AWEManager(

AWEHANDLE hUserID,
UINT unMsg,
LPARAM lParam1,
LPARAM lParam2

)

AWEMAN32.DLL provides an entry point which differ from the 16bit version.

LRESULT
WINAPI AWEManager(

AWEHANDLE hUserID,
UINT unMsg,
LPARAM lParam1,
LPARAM lParam2

)

The parameters' descriptions for both AWEMAN and AWEMAN32.DLL are as follows:

hUserID Specify a user ID, issued by AWE Manager.

unMsg Identifies a message that AWE Manager must process.

lParam1

lParam2 Specify message dependent parameters.

The AWEHANDLE is actually a handle to a data structure, classed as CAWEObject, describing the
settings and relationship between the application and the DLL. It is recommended that the AWE
Manager DLL be dynamically linked with the application. In the application, the pointer to function
declaration should bear the same parameter declaration as stated above. A copy of the declaration
appears in the header file provided.

After making such declaration in the code and loading the DLL using the LoadLibrary() function
call in Windows, the manager's message function can be accessed using a pointer to a function. It is
important to realize that AWE Manager will only support one user application accessing the AWE32 per
hardware device. It is the task of user application to 'release' the device before it can be accessed by
other user application.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 38
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

The parameters to the message function take the form of pre-defined structures. The user applications
will have to allocate these structures before passing in as parameters. These structures have the
following forms:

typedef struct {
 enum SBANK m_SBankIndex;
 WORD m_UBankIndex;
 WORD m_InstrIndex;
 enum TYPEINDEX m_TypeIndex;
 WORD m_SubIndex;
 WORD m_VariIndex[6];
} CParamObject;

typedef struct {
 DWORD m_Size;
 LPSTR m_Buffer;
 DWORD m_SizeUsed;
 WORD m_Flag;
} CBufferObject;

Not all of the fields within the structure will be used every time. Unused members must be set to zeroes
explicitly. It is the duty of both application and DLL to retrieve and set the values from the appropriate
parameters. The long pointer version of the two structures is defined as LPPARAMOBJECT and
LPBUFFEROBJECT.

typedef struct {
 WORD m_SizeOf;
 DWORD m_BaseAddr;
 DWORD m_DevNode;
 DWORD m_RomId;
 DWORD m_RomVer;
 DWORD m_hTask;
 DWORD m_DevCaps;
 char m_DevName[32];
 char m_SndEngine[16];
 char n_RegKey[256];
} CDevObject;

The CDevObject structure can be used to identify the capabilities of available SB AWE32 devices on
the system. Some of the fields are only meaningful in certain platform.

All the above mentioned structures are already provided in the AWE_DLL.H header file. Hence, by
including this header file in your application, the AWE Manager will be ready for accessing.

Manager Messages
The following messages are implemented in AWEMAN.DLL:

AWE_OPEN Acquire AWE Manager to control and configure the
hardware.

AWE_CLOSE Releases control of AWE Manager to other applications.

AWE_GET_NUM_DEVS Determine the total number of SBAWE32 devices
available in the system.

AWE_GET_DEVICE_CAPS Gets the device capabilities.

AWE_QUERY_EFXT_SUPPORT Retrieve a list of available or supported Effect Types.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 39
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_QUERY_EFXV_SUPPORT Retrieve a list of available or supported Type Variations.

AWE_GET_EFX Get the current Effect Types and/or Type Variations in use.

AWE_SELECT_EFX Select an Effect Type and its variations, if any. This
selection will be downloaded immediately into the
hardware.

AWE_SELECT_EFX_EX Extended version of AWE_SELECT_EFX.

AWE_QUERY_SYN_SUPPORT Retrieve a list of available or supported Synthesizer
Emulation.

AWE_GET_SYN_BANK Get the bank descriptor of the current Emulation used in
Synthesizer Bank.

AWE_SELECT_SYN_BANK Select a Synthesizer Emulation for the Synthesizer Bank.

AWE_LOAD_USER_BANK Load a bank of instruments into the User Bank area.

AWE_GET_USER_BANK Retrieve the descriptor of a User Bank.

AWE_CLEAR_USER_BANK Unload (remove) entire bank of instruments from the User
Bank area.

AWE_LOAD_WAVEFX Load wave files as an instument into a Bank

AWE_CLEAR_WAVEFX Unload(remove) WaveFx from Bank

AWE_GET_WAVEFX_PATH Retrieve the path of WaveFX

AWE_LOAD_USER_INSTR Load instrument presets into a User Bank.

AWE_GET_USER_INSTR Retrieve the descriptor attached to an instrument in a bank.
This bank can be either Synthesizer Bank or User Bank.

AWE_CLEAR_USER_INSTR Remove instrument presets from a User Bank.

AWE_GET_UBANK_PARENT To identify if a user bank is loaded by the Synthesizer Bank
or loaded separately on its own.

AWE_QUERY_DRAM_SIZE Retrieve current available and maximum memory on the
AWE32 hardware.

AWE_GET_VERSION Return the current AWE Manager version number.

AWE_SEND_MIDI Sends a MIDI message directly to the driver.

AWE_ISHANDLE To identify if the handle returned by the Manager is valid.

AWE_IS_DEVICE_FREE Determine if a device is free.

AWE_VIENNA_START Acquire AWE Manger when it wishes use Vienna API

AWE_VIENNA_END Release control to other applications

AWE_VIENNA_LOAD_SAMPLE Load user samples

AWE_VIENNA_FREE_SAMPLE Release user samples

AWE_VIENNA_PLAY_SAMPLE Play/Stop user samples

AWE_VIENNA_LOAD_PRESET Load SoundFont2 preset

AWE_VIENNA_FREE_PRESET Free SoundFont2 preset

AWE_VIENNA_NOTE_ON Play a note of the SF2 preset loaded using
AWE_VIENNA_LOAD_PRESET

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 40
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_VIENNA_NOTE_OFF Turn off a note

AWE_VIENNA_CONTROLLER Send a MIDI Controlller message to driver

AWE_VIENNA_PITCH_BEND Send a MIDI Pitch Bend message to driver

AWE_VIENNA_CHANNEL_PRESSURE Send a MIDI Channel Pressure message to driver

AWE_VIENNA_SYSEX Send a MIDI SysEx message to driver

AWE_VIENNA_GET_DRAM_SIZE Retrieve current available and maximum memory on the
AWE32 hardware

Message Reference
Explanations of messages from the manager are documented below.

AWE_OPEN

Actions An application sends this message to AWE Manager when it wishes to
acquire the manager.

Parameters lParam1

Specify a far pointer to a user declared handle type, AWEHANDLE. The DLL
fills this location with a hUserID value if the initialization is successful.

lParam2

Specify a device number starting from 0 to (max. device - 1).

hUserID

Unused.

Remarks This message can only be called once for each hardware device during
initialization.

The manager will check for the existence of the MIDI driver and in-turn
register with it. If the driver fails because of hardware failure or contention,
this function will also fail. Upon successful initialization, the manager will
return a unique user identification (handle) to the application. All subsequent
calls to the manager should have this ID associated with

Following files must be present in Windows,

SBAWE32.DRV - AWE MIDI Driver v4.0 or above

Driver version 4.0 will have file time-stamp 4.00a or later. Opening more
than once will cause the manager to return a busy message. If the MIDI driver
is not available at the time of Open, the manager will still fail and return the
access not permitted message. Such cases happen, for example, when Media
Player has already acquire the MIDI device before the user application opens
the manager

Return The return value would be AWE_NO_ERR if the operation is successful and
an error code otherwise. Possible error messages are:

AWE_ERR_DEVICE_DRV_INVALID

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 41
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_ERR_DLL_BUSY

AWE_ERR_SYSMEM_INSUFFICIENT

AWE_ERR_ACCESS_NOT_PERMITTED

AWE_ERR_VERSION_INVALID

See Also AWE_CLOSE

AWE_CLOSE

Actions An application sends this message to AWE Manager when it wishes to
release control of the acquired AWE32 device to other applications.

Parameters lParam1

Unused.

lParam2

Unused.

hUserID

Current ID assigned to the application by AWE Manager during initialization.

Remarks The following are some important points to note when using this function.

The close function will not cause Windows to unload the AWE Manager
from memory. Unloading depends on whether anymore application is still
accessing it. Only when the last application issues a close message, then the
manager will be unloaded. This is the 'last one off the lights' metaphor. When
the manager is unloaded by Windows, all unused handles will be 'clean' up
by the manager.

The application mentioned above can only be either user applications or
control panel application and not two or more of the same kind

Return The return value is AWE_NO_ERR if the operation is successful, and an
error code otherwise. Possible error message is:

AWE_ERR_USERID_INVALID

See Also AWE_OPEN

AWE_GET_NUM_DEVS

Actions An application sends this message to AWE Manager when it wishes to
determine how many AWE devices are available on the system.

Parameters lParam1

Specify a far pointer to a WORD data type. The DLL fills this location with
the number of AWE devices available on the system.

lParam2

Unused.

hUserID

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 42
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Unused.

Remarks The returned number gives an indication of how many AWE32 devices are
actually supported by the MIDI driver. This is dependent on the different
Windows platforms. Currently, only Windows 95 supports multiple devices.
For other platforms, the number returned will always be 1 if the driver is
successfully initialized.

Return The return value is AWE_NO_ERR if the operation is successful, and an
error code otherwise.

See Also AWE_GET_DEVICE_CAPS

AWE_GET_DEVICE_CAPS

Actions An application sends this message to AWE Manager when it wishes to know
the capabilities of a device.

Parameters lParam1

Specify a DWORD data type. This parameter can either contain a device id
or device node. Device Id simply ranges from 0 to the maximum number of
devices supported by the driver.

lParam2

Specify a far pointer to CDevObject (LPDEVOBJECT) data type. The DLL
will fill this structure with the capabilities of the device.

hUserID

Unused.

Remarks The m_SizeOf field of CDevObject structure must be initialized first before
calling this API. This is to ensure that future version of API will not have
problem filling up the entries of the structures. The members of this structure
are:

Member Remarks
m_SizeOf Contains the size of the CDevObject.

m_BaseAddr Contains the base I/O address of the device in
question. e.g 0x620, 0x640 etc.

m_DevNode Contains the device node of the device (Windows
95).

m_RomId Contains the ROM ID of the device.

m_RomVer Contains the ROM version of the device.

m_hTask Contains the task of the application that is currently
owning the device.

m_DevCaps Contains the driver’s capabilities in supporting the
device. This member is BIT-ORed.

m_DevName[32] Contains the official name of the device registered in
the system.

m_SndEngine[16] Contains the name of the sound engine supported by
the device.

m_RegKey[256] Contains the registry key which information are
stored (Windows 95).

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 43
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Return The return value is AWE_NO_ERR if the operation is successful, and an
error code otherwise.

See Also AWE_GET_NUM_DEVS

AWE_QUERY_EFXT_SUPPORT

Actions An application sends this message to the AWE Manager to retrieve a list of
supported Effect Types.

Parameters lParam1

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

Member Remarks
m_Size Buffer size in characters.

m_Buffer Far pointer of buffer area.

The manager upon returning will fill or change the following fields:

Member Remarks
m_SizeUsed Number of characters from buffer used.

m_Flag Number of entries stored in buffer.

m_Buffer String entries of effect types.

The m_SizeUsed includes the '\0's used to delimit entries. Current version of
MIDI drivers support only one Effect Type. The string representations (not
including quotes) are as follows:

String Type Sub-Index

"Reverb & Chorus" 0 0 - Reverb

1 - Chorus

2 - Bass

3 - Treble

The buffer area will be filled with Effect Types supported by the current
MIDI driver. These entries are in string format, each terminated with a '\0'.
The last entry of the list will have two consecutive '\0's. An example is:

"Reverb & Chorus\0\0"

With the example above, the m_SizeUsed is 17 and m_Flag is 1.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The followings are some important points to note when using this function.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 44
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

The location passed in as pointer must be valid memory locations allocated
by the parent application.

If the buffer is not sufficient to complete the operation, AWE Manager will
not update string entries into the buffer. However, other return parameters
will still be updated.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

See Also AWE_QUERY_EFXV_SUPPORT, AWE_GET_EFX, AWE_SELECT_EFX

AWE_QUERY_EFXV_SUPPORT

Actions An application sends this message to the AWE Manager to retrieve a list of
supported Type Variations.

Parameters lParam1

Specify a far pointer to CParamObject, LPPARAMOBJECT. When the
application is calling the manager, the following fields of the structure are
used,

Member Remarks
m_SubIndex The Sub-Index of the effect types.

m_TypeIndex The effect types index.

The 'Reverb & Chorus' Effect Type supports four sets of variations: Reverb,
Chorus, Bass, and Treble. For example, if the application wishes to query
the variations supported by Chorus of 'Reverb and Chorus', then m_SubIndex
will be 1 and m_TypeIndex will be 0. The manager will fill the following
field when returning:

Member Remarks
m_SubIndex Total number of Sub-Index available for current

selected Effect Types.

When returning, AWE Manager will update the m_SubIndex to contain the
maximum number of Sub-Index available for the Effect Type. Each set of
variations has the following entries and variation index.

String Equivalent Vari-Index Type Sub-Index

"Room 1" 0 0 0

"Room 2" 1 0 0

"Room 3" 2 0 0

"Hall 1" 3 0 0

"Hall 2" 4 0 0

"Plate" 5 0 0

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 45
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

"Delay" 6 0 0

"Panning Delay" 7 0 0

"Chorus 1" 0 0 1

"Chorus 2" 1 0 1

"Chorus 3" 2 0 1

"Chorus 4" 3 0 1

"Feedback Delay" 4 0 1

"Flanger" 5 0 1

"Short Delay" 6 0 1

"Short Delay FB" 7 0 1

"-12dB" 0 0 2

"-8dB" 1 0 2

"-6dB" 2 0 2

"-4dB" 3 0 2

"-2dB" 4 0 2

"0dB" 5 0 2

"2dB" 6 0 2

"4dB” 7 0 2

"6dB” 8 0 2

"8dB” 9 0 2

"10dB” 10 0 2

"12dB" 11 0 2

"-12dB" 0 0 3

"-8dB" 1 0 3

"-6dB" 2 0 3

"-4dB" 3 0 3

"-2dB" 4 0 3

"0dB" 5 0 3

"2dB" 6 0 3

"4dB” 7 0 3

"6dB” 8 0 3

"8dB” 9 0 3

"10dB” 10 0 3

"12dB" 11 0 3

lPar am2

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. Upon calling,
the application will fill the following fields:

Member Remarks
m_Size Indicates the size of buffer available.

m_Buffer Far pointer to a buffer area.

The Manager upon returning, will fill the following fields:

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 46
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Member Remarks
m_SizeUsed Number of characters from buffer used.

m_Flag Number of entries written into the buffer.

m_Buffer String entries of type variations.

The m_SizeUsed includes the '\0's used to delimit entries. The buffer area
will be filled by the manager with the entries of Type Variation supported by
the current MIDI driver. These entries are in string format, each terminated
with a '\0'. The last entry of the list will have two consecutive '\0's. As an
example, we have:

"Chorus 1\0Chorus 2\0Chorus 3\0Chorus 4\0Feedback
Delay\0Flanger\0Short Delay\0Short Delay FB\0\0"

The m_Flag will have 8 and m_SizeUsed will be filled with 87.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip a
General Protection Fault in Windows.

If the buffer is not sufficient to complete the operation, AWE Manager will
not update string entries into the buffer. However, other return parameters
will still be updated.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_EFXT_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

See Also AWE_QUERY_EFXT_SUPPORT, AWE_GET_EFX, AWE_SELECT_EFX

AWE_GET_EFX

Actions An application sends this message to the AWE Manager to retrieve the
currently in use Effect Type and its Type Variations if any.

Parameters lParam1

Specify a far pointer to CParamObject, LPPARAMOBJECT. The manager
will fill the following field with the following appropriate values:

Member Remarks
m_TypeIndex The effect types index.

m_SubIndex Number of variations index returned.

m_VariIndex[..] The type variations index.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 47
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

The m_VariIndex[..] is an array type. 'Reverb & Chorus', only 0 and 1 are
supported respectively. The 'Reverb and Chorus' has four sets of variations
('Reverb', 'Chorus', ‘Treble’ and ‘Bass’) and is the largest. This might
change in future. To access them, simply index the m_VariIndex[..] with the
appropriate numbers e.g. m_VariIndex[0] for Reverb and m_VariIndex[1]
for Chorus. For unused indices, e.g. m_VariIndex[5], m_VariIndex[6], it
must be zeroed out. If the Effect Types specified by m_TypeIndex does not
have variations, the m_VariIndex[..] will not be used.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

See Also AWE_QUERY_EFXT_SUPPORT, AWE_QUERY_EFXV_SUPPORT,

AWE_SELECT_EFX

AWE_SELECT_EFX

Actions An application sends this message to inform the AWE Manager of the Effect
Types and Variations that it wishes to use.

Parameters lParam1

Specify a far pointer to CParamObject, LPPARAMOBJECT. The application
should fill the following fields with appropriate values:

Member Remarks
m_TypeIndex The effect types index.

m_VariIndex[..] The type variations index.

The m_VariIndex[..] is an array type. At this moment, for 'Reverb &
Chorus', only 0 and 1 are supported respectively. The 'Reverb and Chorus'
has two sets of variations (one for each of 'Reverb' and 'Chorus') and is the
largest. This might change in future. To access them, simply index the
m_VariIndex[..] with the appropriate numbers e.g. m_VariIndex[0] for
Reverb and m_VariIndex[1] for Chorus. If the Effect Types specified by
m_TypeIndex does not have variations, the m_VariIndex[..] will not be
used.

String Type Sub-Index
"Reverb & Chorus" 0 0 - Reverb

1 - Chorus

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 48
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

If the Type Index is pointing to 'Reverb & Chorus', then m_VariIndex[0]
should contain the Vari-Index of 'Reverb' and m_VariIndex[1] should have
index of 'Chorus'.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_EFXT_CHANGE_NOT_ALLOWED

AWE_ERR_EFXT_INVALID

AWE_ERR_EFXV_INVALID

See Also AWE_SELECT_EFX_EX, AWE_QUERY_EFXT_SUPPORT,
AWE_QUERY_EFXV_SUPPORT, AWE_GET_EFX

AWE_SELECT_EFX_EX

Actions An application sends this message to inform the AWE Manager of the Effect
Types and Variations that it wishes to use. This is an extended version and
should try to aviod using AWE_SELECT_EFX as far as possible.

Parameters lParam1

Specify a far pointer to CParamObject, LPPARAMOBJECT. The application
should fill the following fields with appropriate values:

Member Remarks
m_TypeIndex The effect types index.

m_VariIndex[..] The type variations index.

The m_VariIndex[..] is an array type. 'Reverb & Chorus', only 0 and 1 are
supported respectively. The 'Reverb and Chorus' has four sets of variations
('Reverb', 'Chorus', ‘Treble’ and ‘Bass’) and is the largest. This might
change in future. To access them, simply index the m_VariIndex[..] with the
appropriate numbers e.g. m_VariIndex[0] for Reverb and m_VariIndex[1]
for Chorus, etc. For unused indices, e.g. m_VariIndex[5], m_VariIndex[6],
it must be zeroed out. If the Effect Types specified by m_TypeIndex does not
have variations, the m_VariIndex[..] must be set to zero.

String Type Sub-Index
"Reverb & Chorus" 0 0 - Reverb

1 - Chorus

2 - Bass

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 49
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

3 - Treble

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_EFXT_CHANGE_NOT_ALLOWED

AWE_ERR_EFXT_INVALID

AWE_ERR_EFXV_INVALID

See Also AWE_QUERY_EFXT_SUPPORT, AWE_QUERY_EFXV_SUPPORT,
AWE_GET_EFX

AWE_QUERY_SYN_SUPPORT

Actions An application sends this message to the AWE Manager to request a list of
available or supported Emulations for Synthesizer Bank.

Parameters lParam1

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

Member Remarks
m_Size Indicates the size of buffer available.

m_Buffer Far pointer to a buffer area.

Upon returning, the manager will update the following fields:

Member Remarks
m_SizeUsed Number of characters from buffer used.

m_Flag Number of entries written into the buffer.

m_Buffer String entries of synthesizer emulation.

The buffer area will be filled by the manager with the entries of Synthesizer
Emulation supported by the current MIDI driver. These entries are in string
format, each delimited by a '\0'. The last entry of the list will have two
consecutive '\0's. Using the above example, we have:

"General MIDI\0GS\0MT 32\0User Custom Synth\0\0"

The size returned includes the '\0's used to delimit two entries. The current
version of MIDI driver supports the following Synthesizer Emulation:

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 50
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

String Idx Entry File
"General MIDI 0 GM SYNTHGM.SBK

"GS" 1 GS SYNTHGS.SBK

"MT 32" 2 MT SYNTHMT.SBK

"User Custom Synth" 3 USER SYNTHUSR.SBK

The bank files can be located in the default directory of AWE. This default
directory is usually a sub-directory of the Sound Blaster path. The Sound
Blaster path can be located from the environment variable "SOUND". The
default name is used whenever a user specified file cannot be located. The
path specified by the user can be found in the SBWIN.INI file under
"AWE32" section. The entry name for each respective synthesizer emulation
are listed in the table. Hence,

[AWE32]
GM = C:\SBANK\USER1.SBK

will have an assignment of USER1.SBK file as the General MIDI Bank.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip
General Protection Fault in Windows

If the buffer is not sufficient to complete the operation, AWE Manager will
not update string entries into the buffer. However, other return parameters
will still be updated.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

See Also AWE_SELECT_SYN_BANK, AWE_GET_SYN_BANK

AWE_GET_SYN_BANK

Actions An application sends this message to the AWE Manager to query for the
current Synthesizer Bank and its descriptor.

Parameters lParam1

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 51
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Member Remarks
m_Size Indicates the size of buffer available.

m_Buffer Far pointer to a buffer area.

Upon returning, the manager will update the following fields:

Member Remarks
m_SizeUsed Number of characters from buffer used.

m_Flag The synthesizer emulation index.

m_Buffer String of current bank descriptor.

The buffer area will be filled by the manager with the descriptor of the
current Synthesizer Bank. The m_Flag will contain the Synth Bank Index to
the available emulation.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip
General Protection Fault in Windows.

If the buffer is not sufficient to complete the operation, AWE Manager will
not update string entries into the buffer. However, other return parameters
will still be updated.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

See Also AWE_QUERY_SYN_SUPPORT, AWE_SELECT_SYN_BANK

AWE_SELECT_SYN_BANK

Actions An application sends this message to inform the AWE Manager of the
emulation it wishes to use as current Synthesizer Bank.

Parameters lParam1

Specify a word data type. This word contains the SBank Index, pointing to
the desired Synthesizer Emulation. The following shows a list of available
Emulations loadable into Synthesizer Bank:

String Idx Entry File
"General MIDI" 0 GM SYNTHGM.SBK

"GS" 1 GS SYNTHGS.SBK

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 52
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

"MT 32" 2 MT SYNTHMT.SBK

"User Custom Synth" 3 USER SYNTHUSR.SBK

For Windows 3.1x, the bank files can be located in the default directory of
AWE. This default directory is usually a sub-directory of the Sound Blaster
path. The Sound Blaster path is located from the environment variable
"SOUND". The default name is used whenever a user specified file cannot be
located. The path specified by the user can be found in the SBWIN.INI file
under the "AWE32" section. The entry name for each respective synthesizer
emulation is listed in the table. Hence,

[AWE32]
GM = C:\SBANK\USER1.SBK

will have an assignment of USER1.SBK file as the General MIDI Bank.

For Windows 95 and Windows NT, the path names for bank files are located
in the Registry. If the specified path is not found, the driver will look for the
file in Windows’ SYSTEM directory.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks This function does not allow an application to specify a file name and
overwrite the original Synthesizer Bank instrument files. The AWE Manager
uses a predetermined name which is known to both the MIDI driver and
itself. To use a user-define emulation as Synthesizer Bank, copy it to the
default AWE directory and rename it to SYNTHUSR.SBK.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_SBANK_INVALID

AWE_ERR_PATHNAME_INVALID

AWE_ERR_SYSMEM_INSUFFICIENT

AWE_ERR_DRAM_INSUFFICIENT

See Also AWE_QUERY_SYN_SUPPORT, AWE_GET_SYN_BANK

AWE_LOAD_USER_BANK

Actions An application sends this message to inform the AWE Manager that it wishes
to load a bank of instruments into the User Bank area. The source can be
either in a file or in memory blocks.

Parameters lParam1

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 53
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Specify a word data type. The application should fill the word with the
desired User Bank number. The valid range of User Bank numbers is 1 to
127.

Note : By default, the driver will remember any user banks that are loaded
using this message. Driver will reload user banks after system reboot unless
the high bit of the User Bank number is set when sending this message.

lParam2

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

Member Remarks
m_Size Indicates the size of buffer area.

m_Flag Indicates if buffer contains a path name.

m_Buffer Far pointer to a buffer area.

The m_Flag field is used to indicate whether the User Bank will be loaded
from a file or from a chunk of memory buffer. The value of m_Flag should be
either OPER_MEMORY or OPER_FILE where OPER_MEMORY indicates
loading from memory buffer pointer by the m_Buffer and OPER_FILE
indicates loading from a file.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip a
General Protection Fault in Windows.

It is recommend that the application use the macro defined by this API
library. The OPER_FILE and OPER_MEMORY are constant macros used to
distinguish between file loading or memory operations.

Return The return value will be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_PATHNAME_INVALID

AWE_ERR_USER_OBJ_INVALID

AWE_ERR_UBANK_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

AWE_ERR_DRAM_INSUFFICIENT

See Also AWE_LOAD_USER_INSTR, AWE_CLEAR_USER_BANK

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 54
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_GET_USER_BANK

Actions An application sends this message to the AWE Manager to request for the
descriptor describing the User Bank.

Parameters lParam1

Specify a word data type. This word contains the UBank Index, pointing to
one of the 127 User Banks. Valid range is 1 to 127.

lParam2

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

Member Remarks
m_Size Indicates the size of buffer available.

m_Buffer Far pointer to a buffer area.

Upon returning, the manager will update the following fields:

Member Remarks
m_SizeUsed Number of characters from buffer used.

m_Buffer String of current bank descriptor.

The buffer area will be filled by the manager with the descriptor of the
selected User Bank. The string ends with two consecutive '\0's. Size
returned includes the '\0's.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to a trip
General Protection Fault in Windows.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_UBANK_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

See Also AWE_LOAD_USER_BANK, AWE_CLEAR_USER_BANK

AWE_CLEAR_USER_BANK

Actions An application sends this message to remove a loaded User Bank from
memory.

Parameters lParam1

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 55
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Specify a word data type. This word contains the UBank Index indicating
which User Bank to be removed from memory. Valid range is 1 to 127.

l Param2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None.

Return The return value will be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_UBANK_INVALID

See Also AWE_LOAD_USER_BANK, AWE_CLEAR_USER_BANK

AWE_LOAD_WAVEFX

Actions An application sends this message to inform the AWE Manager that it wishes
to load a wave file as an instrument into either Synthesizer Bank or User
Bank. The acceptable files can be any Windows acceptable PCM wave
files. Compressed wave files are not supported.

Parameters lParam1

Specify a word data type. High word of lParam1 should be set to the Bank
Number and low word should be set to the Instrument Number. The valid
range of Bank Numbers is 0 to 127. Conventionally, Synthesizer Bank will
occupy Bank 0 and User Bank will occupy Bank 1 to 127.

Note : By default, the driver will remember any WaveFXs that are loaded
using this message. Driver will reload the WaveFXs after system reboot
unless the high bit of the Bank number is set when sending this message.

lParam2

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

Member Remarks
m_Flag Set to 0

m_Buffer Far pointer to a buffer area that contain the full path
to the wave file to be loaded as WaveFX

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 56
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip a
General Protection Fault in Windows.

Return The return value will be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_PATHNAME_INVALID

AWE_ERR_USER_OBJ_INVALID

AWE_ERR_UBANK_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

AWE_ERR_DRAM_INSUFFICIENT

See Also AWE_CLEAR_WAVEFX,
AWE_GET_WAVEFX_PATH

AWE_CLEAR_WAVEFX

Actions An application sends this message to inform the AWE Manager that it wishes
to clear WaveFX from a bank.

Parameters lParam1

Specify the Bank Number that WaveFX is located.

lParam2

Specify the Instrument Number that the WaveFX is located.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None

Return The return value will be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_PATHNAME_INVALID

AWE_ERR_USER_OBJ_INVALID

AWE_ERR_UBANK_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

AWE_ERR_DRAM_INSUFFICIENT

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 57
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

See Also AWE_LOAD_WAVEFX,
AWE_GET_WAVEFX_PATH

AWE_GET_WAVEFX_PATH

Actions An application sends this message to inform the AWE Manager that it wishes
to retrieve the path of WaveFX.

Parameters lParam1

Unused

lParam2

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

Member Remarks
m_Flag Instrument Number of the WaveFX which path

required to be retrieved.

m_Buffer Far pointer to a buffer area.

Note : Only the path of WaveFXs loaded to Bank 0 can be retrieved.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip a
General Protection Fault in Windows.

Return The return value will be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_PATHNAME_INVALID

AWE_ERR_USER_OBJ_INVALID

AWE_ERR_UBANK_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

AWE_ERR_DRAM_INSUFFICIENT

See Also AWE_LOAD_WAVEFX,
AWE_CLEAR_WAVEFX

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 58
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_LOAD_USER_INSTR

Actions An application sends this message to download a chunk of instrument presets
into the AWE DRAM. The loading can be either from file or direct from
memory area.

Parameters lParam1

Specify a far pointer to CParamObject, LPPARAMOBJECT. The application
should fill the following fields with appropriate values:

Member Remarks
m_UBankIndex The index to designate User Bank.

m_InstrIndex The index to an Instrument within the UBank.

The m_InstrIndex will be the instrument offset of the User Bank specified by
UBank Index. The m_InstrIndex must be a valid value between 0 to 127.

lParam2

Specify a far pointer to a CBufferObject data type, LPBUFFEROBJECT.
When the application calls the manager, the following fields are used:

Member Remarks
m_Size Indicates the size of buffer area.

m_SizeUsed Indicates Instrument number of the bank located by
m_Buffer.

m_Flag Indicates if buffer contains a path name.

m_Buffer Far pointer to a buffer area.

The m_Flag field is used to indicate whether the User Bank will be loaded
from a file or from a chunk of memory buffer. The value of m_Flag should
be either OPER_MEMORY or OPER_FILE where OPER_MEMORY
indicates loading from memory buffer pointer by the m_Buffer and
OPER_FILE indicates loading from a file. The m_SizeUsed is loaded with
the Instrument index which will be loaded from the bank located by the
m_Buffer variable.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip a
General Protection Fault in Windows.

It is recommend that the application use the macro defined by this API
library. The OPER_FILE and OPER_MEMORY are constant macros used to
distinguish between file loading or memory operations.

This function will overwrite any instrument presets previously attached to the
m_InstrIndex. No error or warning message is given.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 59
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_PATHNAME_INVALID

AWE_ERR_USER_OBJ_INVALID

AWE_ERR_INSTR_INVALID

AWE_ERR_UBANK_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

AWE_ERR_SYSMEM_INSUFFICIENT

AWE_ERR_DRAM_INSUFFICIENT

See Also AWE_CLEAR_USER_INSTR

AWE_GET_USER_INSTR

Actions An application sends this message to the AWE Manager to request for an
instrument descriptor of the Synthesizer Bank or User Bank.

Parameters lParam1

Specify a far pointer to a CParamObject data type, LPPARAMOBJECT. The
application should fill the following field with appropriate values:

Member Remarks
m_UBankIndex The index to destinate User Bank.

m_InstrIndex The index to an Instrument within the UBank.

The m_InstrIndex will be the instrument offset of the User Bank specified by
UBank Index. The m_InstrIndex must be a valid value between 0 to 127.

lParam2

Specify a far pointer to CBufferObject, LPBUFFEROBJECT. When the
application calls the manager, the following fields are used:

Member Remarks
m_Size Indicates the size of buffer available.

m_Buffer Far pointer to a buffer area.

Upon returning, the manager will update the following fields:

Member Remarks
m_SizeUsed Number of characters from buffer used.

m_Buffer String of current instrument descriptor.

The buffer area will be filled by the manager with the descriptor of the
instrument.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 60
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks The following are some important points to note when using this function.

The location passed in as pointer must be valid memory locations allocated
by the parent application.

If the buffer is not sufficient to complete the operation, AWE Manager will
not update string entries into the buffer. However, other return parameters
will still be updated.

Return The return value will be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_UBANK_INVALID

AWE_ERR_INSTR_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

See Also AWE_LOAD_USER_INSTR, AWE_CLEAR_USER_INSTR

AWE_CLEAR_USER_INSTR

Actions An application sends this message to clear an instrument's presets located in
the User Bank area.

Parameters lParam1

Specify a word data type. The word contains the UBank Index where the
instrument is to be removed from.

lParam2

Specify a word data type. This word contains the instrument number in the
User Bank specified by the UBank Index in lParam1. The instrument's
presets will be deleted from the memory area.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_DEVICE_BUSY

AWE_ERR_INSTR_INVALID

AWE_ERR_UBANK_INVALID

See Also AWE_LOAD_USER_INSTR

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 61
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_GET_UBANK_PARENT

Actions An application sends this message to manager requesting the it identify the
original parent of specified user bank. This parent is considered as the bank
which loads the user bank.

Parameters lParam1

A far pointer to a WORD containing the User Bank index. The valid range for
this is 1 to 127.

The driver upon returning will fill or change the contents of this word. Three
types of values may be returned.

lParam1 Remarks
Unchanged The User Bank in query actually is self loaded

(i.e. parent of itself).
0 to 127 The User Bank is loaded in by other bank. The

parent bank has the index from 0 to 127. 0
signify Synthesiser Bank.

-1 The User Bank in query is not loaded yet.

lParam2

Unused

Remark This message is introduced because there is no way to differentiate between
a User Bank that is self-loaded or loaded by other User Bank.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible errors are:

AWE_ERR_USERID_INVALID

AWE_ERR_RESOURCE_INSUFFICIENT

See Also None.

AWE_QUERY_DRAM_SIZE

Actions An application sends this message to the AWE Manager to request for current
available and maximum DRAM size in the AWE hardware.

Parameters lParam1

Specify a far pointer to a double word, DWORD FAR *. This location will
be used to store the maximum amount of DRAM found on the hardware.

lParam2

Specify a far pointer to a double word, DWORD FAR *. This location will
be used to store the current available amount of DRAM found on the
hardware.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The unit for both lParam1 and lParam2 is words. That is, the return size is
in terms of number of words.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 62
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

See Also None.

AWE_GET_VERSION

Actions This message retrieves the AWE Manager version number.

Parameters lParam1

Specify a far pointer to word, WORD FAR *. The location of this pointer
will be filled with the current major version of the AWE Manager.

lParam2

Specify a far pointer to word, WORD FAR *. The location of this pointer
will be filled with the current minor version of the AWE Manager.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

See Also None.

AWE_SEND_MIDI

Actions An application sends this message to the manager requiring it to service
MIDI commands.

Parameters lParam1

A DWORD containing the MIDI message. This message follows the format as
specified by the Standard MIDI Message Format. The message is decoded
as:

00000000 0ccccccc 0bbbbbbb 1aaaaaaa

High-Order Byte Low-Order Byte

where,

aaaaaaa: Specify the status byte.

bbbbbbb: Specify the first data byte. (0-127)

ccccccc: Specify the second data byte. (0-127)

lParam2

Unused

hUserID

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 63
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks This message is provided so that MIDI events can inserted synchronously
without go through the MMSYSTEM. The MIDI command accepted here are
generic commands drafted. If a command is not supported by the driver, it
will not be executed

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

AWE_ERR_DRIVER_BUSY

See Also None.

AWE_ISHANDLE

Actions An application sends this message to the AWE Manager to identify if a
handle is a successful candidate of the manger. Applications may use this
message to validate a handle before committed to any operations.

Parameters lParam1

Specify a declared handle type, AWEHANDLE. This is the handle used in
query.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks The following are some important points to note when using this function :

This message is only meaningful to be called after successful acquisition of
the Manager.

The location passed in as pointer must be valid memory locations allocated
by the parent application. If the locations are invalid, it is possible to trip
General Protection Fault in Windows.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

See Also None.

AWE_IS_DEVICE_FREE

Actions An application sends this message to the AWE Manager to identify if a
device is free and available. Application may wish to do so before
attempting to open the device.

Parameters lParam1

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 64
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Specify a DWORD data type. Indicates the device number in query.

lParam2

Unused.

hUserID

Current ID assigned to the application by the AWE Manager during
initialization.

Remarks None.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise

See Also None.

AWE_VIENNA_START

Actions Application sends this message to AWE Manger when it wishes to acquire
the Vienna API.

Parameters lParam1

Specify a pointer to a user delacred handle type, AWEHANDLE. The DLL
fills this location with a value hUserID if the initialization is successful.

lParam2

Unused.

hUserID

Unused.

Remarks This message is independent from AWE_OPEN. It is not necessary for
application to call AWE_OPEN prior to this.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_DEVICE_BUSY

See Also AWE_VIENNA_END

AWE_VIENNA_END

Actions Application sends this message to AWE Manger when it wishes to release
control of Vienna API to other applications.

Parameters lParam1

Unused

lParam2

Unused.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 65
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise.

See Also AWE_VIENNA_START

AWE_VIENNA_LOAD_SAMPLE

Actions Application sends this message to AWE Manager when it need to load user
samples. The samples are streamed in the form of sample packets,
ViSmplObject.

Parameters lParam1

Specify a far pointer to CViSmplObject, LPVISMPLOBJECT. When the
application calls the manager, the following fields of the CViSmplObject
structure are used,

Member Remarks
dwcbSize Size of the stream buffer (including the header information)

dwFlag Set to zero

dwSampleHandle This field will be filled with a handle to the sample after the
first call to stream sample. This handle will be used to
identify the sample when calling other related functions.

dwSampleOffset Set to zero.

dwFormatTag Wave format type of the sample. Only
WAVE_FORMAT_PCM is supported.

dwSamplePerSec Sampling rate of the sample. Support any Windows
supported sampling rate. The Manager will internally convert
to 44100Hz.

dwBitsPerSample Bits per Sample. Currently only support 16- bit data. For 8-
bit sample, application need to convert it to 16-bit.

dwChannels Number of channels. Currently only support MONO. The
value of this field is always set to 1

dwSampleSize Total samples to be streamed, in terms of number of words.

iSample This is the place holder where the actual samples are stored
starting from here.

lParam2

Unused.

hUserID

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 66
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Unused.

Remarks Samples are streamed in a series of of CViSmplObjects. For stereo wave
file, left and right samples are seperately streamed. It is equivalent to
streaming 2 mono wave files. The AWE_VIENNA_PLAY_SAMPLE can be
called to play either the left or right sample. A true stereo sound can only be
achieved by building a SoundFont2 object using the
AWE_VIENNA_LOAD_PRESET, with left and right sample pan to left and
right respectively.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

AWE_ERR_INVALID_SAMPLE

AWE_ERR_OUT_OF_GCHANNEL

See Also AWE_VIENNA_FREE_SAMPLE,
AWE_VIENNA_PLAY_SAMPLE,
AWE_VIENNA_LOAD_PRESET

AWE_VIENNA_FREE_SAMPLE

Actions Application sends this message to AWE Manager when it want to release the
sample which was loaded using AWE_VIENNA_LOAD_SAMPLE

Parameters lParam1

dwSampleHandle.

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:
AWE_ERR_USERID_INVALID
AWE_ERR_INVALID_SAMPLE

See Also AWE_VIENNA_LOAD_SAMPLE

AWE_VIENNA_PLAY_SAMPLE

Actions Application sends this message to AWE Manager when it want to play/stop
sample which was loaded using AWE_VIENNA_LOAD_SAMPLE.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 67
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Parameters lParam1

Specify a far pointer to CViPlayObject, LPVIPLAYOBJECT. When the
application calls the manager, the following fields of the CViPlayObject
structure are used,

Member Remarks
dwFlag Set to zero to start playing the sample. Set to 0xFFFFFFFF

to stop.

dwSampleHandle Set to sample handle which is obtained when streaming the
sample.

dwStart Set to zero (for RAM sample)

dwEnd Set to zero (for RAM sample)

dwStartLoop Start loop offset in terms of words. Set to zero if no looping.

dwEndLoop End loop offset in terms of words. Set to zero if no looping.

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks Applications need to ensure that every sample played is stopped. Otherwise,
undesirable noise could occur when loading other samples.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

AWE_ERR_INVALID_SAMPLE

AWE_ERR_OUT_OF_GCHANNEL

See Also AWE_VIENNA_LOAD_SAMPLE

AWE_VIENNA_LOAD_PRESET

Actions Application sends this message when it wishes to load a SoundFont2 presets.

Parameters lParam1

Specifies a far pointer to a memory locations where a valid SoundFont2
presets is stored.

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 68
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_INVALID_PRESET

See Also AWE_VIENNA_FREE_PRESET

AWE_VIENNA_FREE_PRESET

Actions Application sends this message to release the SoundFont2 preset.

Parameters lParam1

Specifies a far pointer to a SoundFont2 preset.

lParam2

Specifies a far pointer to a double word, DWORD FAR*. This location will
be used to store the current available amout of DRAM.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_INVALID_PRESET

See Also AWE_VIENNA_LOAD_PRESET

AWE_VIENNA_NOTE_ON

Actions Application sends this message to AWE Manager when it wishes to start a
sound from the SoundFont2 object built using
AWE_VIENNA_LOAD_PRESET.

Parameters lParam1

The low word is the Note Number

The high word is the Velocity

Valid range for Note Number and Velocity is from 0 to 127.

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 69
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_ERR_USERID_INVALID

See Also AWE_VIENNA_LOAD_PRESET

AWE_VIENNA_NOTE_OFF

AWE_VIENNA_NOTE_OFF

Actions Application sends this message to AWE Manager when it want to stop a
sound started by AWE_VIENNA_NOTE_ON.

Parameters lParam1

The low word is the Note Number

The high word is the Velocity

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise. Possible error is:

AWE_USERID_INVALID

See Also AWE_VIENNA_LOAD_PRESET

AWE_VIENNA_CONTROLLER

Actions Application sends this message to AWE Manager when it wishes to send a
MIDI Controller message.

Parameters lParam1

The low word is the Controller Number

The high word is the Controller Value

The valid range from Controller Number and Controller Value is from 0 to
127. Supported controllers are :

CC0 Bank Select

CC1 Modulation Wheel

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 70
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

CC6 Data Entry MSB

CC7 Master Volume

CC10 Pan Position

CC11 Expression

CC38 Data Entry LSB

CC64 Sustain Pedal

CC91 Effects Depth (Reverb)

CC93 Chorus Depth

CC98 Non-Registered Parameter Number LSB

CC99 Non-Registered Parameter Number MSB

CC100 Registered Parameter Number LSB

CC101 Registered Parameter Number MSB

CC120 All Sound Off

CC121 Reset All Controllers

CC123 All Notes Off

RPN recognizes controller value 0 (pitch-bend sensitivitiy). Reset All
controllers resets the following:

Pitch Wheel

Modulation Wheel

Expression (CC11)

Sustain Pedal (CC64)

Channel Pressure

Non-Registered Parameter Numbers.

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise.

See Also AWE_VIENNA_LOAD_PRESET

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 71
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_VIENNA_PITCHBEND

Actions Application sends this message to AWE Manager when it wishes to send a
MIDI Pitchbend message.

Parameters lParam1

The low word is the LSB of the pitch bend value

The high word is the MSB of the pitch bend value

Valid range for LSB and MSB is from 0-127

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise.

See Also None

AWE_VIENNA_CHANNEL_PRESSURE

Actions Application sends this message to AWE Manager when it wishes to send a
MIDI Channel Pressure message

Parameters lParam1

The low word is the Channel Pressure value. Valid range is from 0-127.

High word is unused.

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise.

See Also None

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 72
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_VIENNA_SYSEX

Actions Application sends this message to AWE Manager when it wishes to send a
MIDI System Exclusive message.

Parameters lParam1

Specify a far pointer to SysEx data string.

lParam2

Unused.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks None

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise.

See Also None

AWE_VIENNA_GET_DRAM_SIZE

Actions Application sends this message to AWE Manager to request for current
available and maximum DRAM size.

Parameters lParam1

Specifies a far pointer to a double word, DWORD*. This location will be
used to store the maximum amount of DRAM found.

lParam2

Specifies a far pointer to a double word, DWORD FAR*. This location will
be used to store the current available amout of DRAM.

hUserID

Curerent ID assigned to the application by AWE Manager during
initialization.

Remarks The unit for both lParam1 and lParm2 is words. That is, the return size is
in terms of number of words.

Return The return value would be AWE_NO_ERR if the operation is successful, and
an error code otherwise.

See Also AWE_QUERY_DRAM_SIZE

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 73
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Error Messages
The error messages generated by the AWE Manager are described below. They can be divided into
three categories:

• General Error Messages

• Invalid Parameter Messages

• Resource Contention Messages

General Error Messages
AWE_NO_ERR No error message. This message will be display

most of the time to indicate a successful
operation.

AWE_ERR_UNDEFINE_ERROR A reserved error message indicating an error not
defined during development. A new error
message may be added to it at a later stage when
the cause of the error is identified.

Invalid Parameter Messages
AWE_ERR_DEVICE_DRV_INVALID This error message is return when the

SBAWE32.DRV MIDI driver is not located.

AWE_ERR_USERID_INVALID An invalid user ID is used to gain access to the
AWE Manager. This ID should be obtained from
the AWE_OPEN API call.

AWE_ERR_EFXT_INVALID An invalid Effect Type Index is specified. This
error happens when an application specifies an
Effect Type Index that is not currently supported
by the MIDI driver.

AWE_ERR_EFXV_INVALID An invalid Type Variation index is specified.
This error happens when an application specifies
a Type Variation index that is not supported by
the MIDI driver.

AWE_ERR_SBANK_INVALID An invalid Synthesizer Bank index is specified.
This error occurs when the MIDI driver cannot
support the specified Synthesizer Bank index.

AWE_ERR_PATHNAME_INVALID An invalid path name to a file is specified. This
happens when an operation, which requires a user
file or a predetermined path, cannot locate the
desired file.

AWE_ERR_USER_OBJ_INVALID An user object module has an incorrect format.
This error occurs when an application attempts to
download an unrecognized bank of instruments
(or single instrument) into a specific User Bank
area. This module uses the SBK format.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 74
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_ERR_INSTR_INVALID An invalid instrument index is specified. This
index is only supported within the range of 0 to
127, i.e. 128 instruments.

AWE_ERR_UBANK_INVALID An invalid User Bank index is specified. This
index is only supported within the range of 1 to
127. An error occurs when the application points
to a bank index higher or lesser than the legal
range.

AWE_ERR_MSG_INVALID Indicates that an undefined API message is
received by the manager.

AWE_ERR_ACCESS_NOT_PERMITTED When an application calls the manager without
first acquiring the MMSystem, the AWE Manager
will not allow the application to gain access to it.

AWE_ERR_VERSION_INVALID Indicates that a incompatible MIDI driver is used.
This driver does not conform to the required
version number of the Manager.

Resource Contention Messages
AWE_ERR_DLL_BUSY Notifies the application that another application

has already accessed the manager and is still
accessing it. This error message is to prevent
multiple applications calling the manager
simultaneously.

AWE_ERR_DEVICE_BUSY Indicates that the MIDI driver is performing
hardware specific operations. The calling
application may have to wait till it is ready.

AWE_ERR_RESOURCE_INSUFFICIENT Indicates that the calling application has provided
insufficient memory buffer space required to
complete the current query operation.

AWE_ERR_SYSMEM_INSUFFICIENT Indicates that the AWE Manager is unable to
allocate any more memory from Windows for
internal use.

AWE_ERR_EFXT_CHANGE_NOT_ALLOWED Indicates that effect types cannot be
changed while MIDI driver is in play back mode.

AWE_ERR_DRAM_INSUFFICIENT Indicates that the MIDI driver has detected
insufficient memory available on the AWE
hardware to complete an operation.

Vienna API Error Messages
AWE_ERR_OUT__OF_MEM Notifies the application that driver has detected

insufficient system memory.

AWE_ERR_INVALID_MESSAGE Indicates that a message not recognised by the
driver was sent.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 75
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

AWE_ERR_INVALID_SAMPE Indicates application try to load an invalid sample
using AWE_VIENNA_LOAD_SAMPLE.

AWE_ERR_OUT_OF_DRAM Indicates that the AWE32 hardware doesn't have
enough RAM to hold the user sample.

AWE_ERR_OUT_OF_GCHANNEL Indicates that MIDI driver is run of channels to
be allocated to play user samples.

AWE_ERR_INVALID_PRESET Indicates that application try to load an invalid
preset using AWE_VIENNA_LOAD_PRESET.

 Windows Programming Guide

This chapter provides you with examples on how to use the API provided by AWEMAN. The examples
provided, in fragments of code, are sufficient to let you start accessing and manipulating the Sound
Blaster AWE32. This guide will show, in step by step examples, how the AWE32 features can be
programmed using the DLL provided.

This guide assumes that you are proficient in 'C' and Windows programming basics. The code present in
the examples assume that the DLL is statically linked to your program.

This chapter consists of the following sections :

• Opening and closing the DLL

• Query for support

• Retrieving selections

• Issuing selections

Opening and closing
The first step in your application is to obtain the AWE device by calling the API provided in the
AWEMAN.DLL. This can be done during your program's initialization in WinMain.

#include "windows.h"
#include "AWE_DLL.H"

/* Global variables */
extern AWEHANDLE hDeviceID;
.
.
int PASCAL WinMain (
 HANDLE hInst,
 HANDLE hPrevInst,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 MSG msg;
 LRESULT lResult;
 HWND hWnd;
 WORD num;

.

.
 /* Perform your program's initialization and create main window */

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 76
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

 InitApplication(hInst);
 hWnd = CreateWindow("DEMO", "AWE Application", WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInst, NULL);

.

.

 /* Check for number of devices available in the system */
 /* System which does not support multiple card (like Win3.1) will */
 /* simply return 1 if there is an AWE hardware. */
 lResult = AWEManager(0,AWE_GET_NUM_DEVS,(LPARAM)(WORD FAR *)&num,0);
 if (lResult != AWE_NO_ERR)
 {
 /* Do error processing here! */

.

.
 return NULL;
 }

 /* Open the AWE Manager and retrieve a registered ID. */
 /* The 0 in last parameter refers to the first device available in */
 /* the system. The value in this parameter should never be greater */
 /* or equals to num */
 lResult = AWEManager((AWEHANDLE)0, AWE_OPEN, (LPARAM)&hDeviceID,
 0);
 if(lResult != AWE_NO_ERR)
 {
 /* Do error processing here! */

.

.
 return NULL;
 }

.

.
 /* Acquire & dispatch messages until a WM_QUIT msg is received */
 while (GetMessage(&msg,NULL,NULL,NULL))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 /* Close AWE Manager */
 AWEManager(hDeviceID, AWE_CLOSE, 0L, 0L);

 return (msg.wParam);
}

If the calling application is running on a system that supports multiple AWE hardware (like Windows
95), it should use the AWE_GET_NUM_DEVS API to determine the number of devices available in the
system. If there is a need to selectively pick from one of the devices, the application can use the
AWE_GET_DEVICE_CAPS API to retrieve capabilities of individual AWE devices.

Remember to close the AWE Manager by calling AWE_CLOSE as shown in the example above. This
will allow other applications to use the manager after you have finished using it.

Querying for supports
The query class API provided by the Manager allows you to query the AWE's current available
resources. It is important to query for available support before issuing them. This is because, the features
provided by the Manager may increase or changes as time goes past. Generally, the options available of
querying are Synthesizer Bank, Effect Types and Type Variations. In addition, the memory available on
the AWE can also be queried.

The following function retrieves the available support and updates the global variables. This example
can be added in your program's initialization routine.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 77
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

#include "string.h"
#include "windows.h"
#include "AWE_DLL.H"

#define BUF_SIZE 255

AWEHANDLE hID;
char cSynthName[4][100]; // Buffer to store support strings
char cEffectType[3][50];
char cReverbList[8][50];
char cChorusList[8][50];
char cTrebleList[12][50];
char cBassList[12][50];
DWORD dwMemAvail;
DWORD dwMemMax;

char *GetElement(char *source, int index, int size)
//
// Return the indexed element in a list of string.
// Each element terminated by '0'.
// Last element terminates with two '0'.
//
{
 char *dest = source;
 char *end = source + size;
 int i;

 for (i=0; i < index; i++)
 {
 // Traverse the pointer till a \0 is met.
 while (*dest != 0 && dest < end) dest++;
 ++dest; // skip the \0.
 }
 return dest; // return head of next string.
}

void RetrieveSupport(void)
//
// Retrieve Synth and Effect Type supported by the MIDI driver.
//
{
 char scratch[BUF_SIZE];
 WORD i;
 CBufferObject buffer;
 CParamObject param;

 //
 // SYNTHESIZER BANK
 // Get Synthesizer Emulation List
 buffer.m_Size = BUF_SIZE;
 buffer.m_Buffer = (LPSTR)&scratch[0];

 AWEManager(hID, AWE_QUERY_SYN_SUPPORT,
 (LPARAM)(LPBUFFEROBJECT)&buffer, 0L);

 // Add into the Synth buffer
 for (i=0; i<buffer.m_Flag; i++)
 strcpy(&cSynthName[i][0],(const char*) GetElement(&scratch[0],i,
 (int)buffer.m_SizeUsed));

 //
 // EFFECTS TYPE
 // Get Effects Type List
 // Same buffer settings as before.
 AWEManager(hID, AWE_QUERY_EFXT_SUPPORT,
 (LPARAM)(LPBUFFEROBJECT)&buffer, 0L);

 // Add into the EfxType buffer
 for (i=0; i<buffer.m_Flag; i++)
 strcpy(&cEffectType[i][0],(const char*) GetElement(&scratch[0],i,
 (int)buffer.m_SizeUsed));

 //
 // REVERB TYPE VARIATIONS

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 78
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

 // Get REVERB Type Variations List
 // Same buffer settings as before.
 param.m_SubIndex = REVERB;
 param.m_TypeIndex = REVERB_CHORUS;
 AWEManager(hID,AWE_QUERY_EFXV_SUPPORT,(LPARAM)(LPPARAMOBJECT)¶m,

(LPARAM)(LPBUFFEROBJECT)&buffer);

 // Add into the Reverb Buffer
 for (i=0; i<buffer.m_Flag; i++)
 strcpy(&cReverbList[i][0], (const char*)
 GetElement(&scratch[0], i, (int) buffer.m_SizeUsed));

 //
 // CHORUS TYPE VARIATIONS
 // Get CHORUS Type Variations List
 // Same buffer settings as before.
 param.m_SubIndex = CHORUS;
 AWEManager(hID,AWE_QUERY_EFXV_SUPPORT,(LPARAM)(LPPARAMOBJECT)¶m,

(LPARAM)(LPBUFFEROBJECT)&buffer);

 // Add into the Chorus Buffer
 for (i=0; i<buffer.m_Flag; i++)
 strcpy(&cChorusList[i][0],(const char*) GetElement(&scratch[0],i,
 (int)buffer.m_SizeUsed));

 //
 // TREBLE TYPE VARIATIONS
 // Get Treble Type Variations List
 // Same buffer settings as before.
 param.m_SubIndex = TREBLE;
 AWEManager(hID,AWE_QUERY_EFXV_SUPPORT,(LPARAM)(LPPARAMOBJECT)¶m,

(LPARAM)(LPBUFFEROBJECT)&buffer);

 // Add into the Treble Buffer
 for (i=0; i<buffer.m_Flag; i++)
 strcpy(&cTrebleList[i][0],(const char*) GetElement(&scratch[0],i,
 (int)buffer.m_SizeUsed));

 //
 // BASS TYPE VARIATIONS
 // Get Bass Type Variations List
 // Same buffer settings as before.
 param.m_SubIndex = BASS;
 AWEManager(hID,AWE_QUERY_EFXV_SUPPORT,(LPARAM)(LPPARAMOBJECT)¶m,

(LPARAM)(LPBUFFEROBJECT)&buffer);

 // Add into the Bass Buffer
 for (i=0; i<buffer.m_Flag; i++)
 strcpy(&cBassList[i][0],(const char*) GetElement(&scratch[0],i,
 (int)buffer.m_SizeUsed));

 // QUERY MEMORY STATUS
 // Get Memory status for both available and maximum.
 AWEManager(hID,AWE_QUERY_DRAM_SIZE,(LPARAM)(DWORD FAR*)&dwMemMax,

(LPARAM)(DWORD FAR*)&dwMemAvail);
}

Note that there is no error handling implemented in the above functions. It is assume that the buffer size
used to retrieve the strings is sufficient. If you do not wish to allocate the scratch buffer from the stack,
you will have to query for the required buffer size. Using the size obtained you can then use it for
dynamic allocation. To query for buffer size required, specify a buffer of 1 character. This will cause the
AWE Manager to return the error AWE_ERR_RESOURCE_INSUFFICIENT. From the CBufferObject,
the member m_SizeUsed will contain the number of bytes required to contain the entire list of strings.

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 79
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Retrieving selections
The 'Get' class API provided by the Manager allows you to retrieve the AWE's current selection. You
can retrieve the current in use selection from Effect Types and Variations. For Synthesizer Bank, User
Bank and Instruments in the bank, these API will be used to retrieve their descriptors.

The following set of functions retrieve the current selection and updates the global variables. This
example can be added to your program.

#include "string.h"
#include "windows.h"
#include "AWE_DLL.H"

#define BUF_SIZE 255

AWEHANDLE hID;
enum SBANK m_CurSynthBank; // Current synthesizer bank
enum TYPEINDEX m_CurEfxType; // Current effects type
enum VARIINDEX m_CurTypeVari[6]; // Current type variations
char cUBankDescriptor[30]; // User Bank Descriptor

void GetCurrentSelection(void)
//
// Retrieve the current Hardware Settings
//
{
 CParamObject param;
 CBufferObject buffer;
 char scratch;

 // Get current Synthesizer Bank from AWEMAN
 buffer.m_Size = sizeof(scratch);
 buffer.m_Buffer = (LPSTR)&scratch;

 AWEManager(hID,AWE_GET_SYN_BANK,(LPARAM)(LPBUFFEROBJECT)&buffer,0L);
 // should return an error, since buffer not enough
 // Ignore error, since we only want m_Flag => SBANK INDEX

 m_CurSynthBank = (enum SBANK)buffer.m_Flag;

 // Get Current Effects Type and Variations
 param.m_VariIndex[REVERB] = param.m_VariIndex[CHORUS] = 0;

 AWEManager(hID, AWE_GET_EFX_EX, (LPARAM)(LPPARAMOBJECT)¶m,0L);

 m_CurEfxType = (enum TYPEINDEX) param.m_TypeIndex;
 m_CurTypeVari[0] = (enum VARIINDEX) param.m_VariIndex[0];
 m_CurTypeVari[1] = (enum VARIINDEX) param.m_VariIndex[1];
 m_CurTypeVari[2] = (enum VARIINDEX) param.m_VariIndex[2];
 m_CurTypeVari[3] = (enum VARIINDEX) param.m_VariIndex[3];
 m_CurTypeVari[4] = (enum VARIINDEX) param.m_VariIndex[4];
 m_CurTypeVari[5] = (enum VARIINDEX) param.m_VariIndex[5];
}

void GetUBankDescriptor(int nUBNum)
//
// Retrieve the User Bank's Descriptor.
//
{
 char scratch[BUF_SIZE];
 CBufferObject buffer;

 buffer.m_Size = BUF_SIZE;
 buffer.m_Buffer = (LPSTR)&scratch;

 AWEManager(hID, AWE_GET_USER_BANK, (LPARAM)(WORD) nUBNum,
(LPARAM)(LPBUFFEROBJECT) &buffer);

 if (buffer.m_SizeUsed == 1)
 strcpy((char *) &cUBankDescriptor[0],
 (const char*)"NO DESCRIPTOR\0");
 else
 strcpy((char *) &cUBankDescriptor[0], (const char*) &scratch[0]);
}

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 80
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

char *GetInstrDescriptor(int nBNum, int nINum, char *desc)
//
// Retrieve the Instrument's Descriptor.
//
{
 char scratch[BUF_SIZE];
 CBufferObject buffer;
 CParamObject param;

 param.m_UBankIndex = nBNum;
 param.m_InstrIndex = nINum;

 buffer.m_Size = BUF_SIZE;
 buffer.m_Buffer = (LPSTR)&scratch;

 AWEManager(hID,AWE_GET_USER_INSTR,(LPARAM)(LPPARAMOBJECT)¶m,
(LPARAM)(LPBUFFEROBJECT)&buffer);

 if (buffer.m_SizeUsed == 1)
 strcpy(desc,(const char*)"NO DESCRIPTOR\0");
 else
 strcpy(desc,(const char*)&scratch[0]);

 return desc;
}

Note that there is no error handling implemented in the above functions. It is assume that the buffer size
used to retrieve the strings is sufficient. Unlike the query class API, the size required to contain the
descriptor will not be returned if the input buffer size is not large enough. This is because the descriptor
store in the memory has a maximum size of 20 bytes.

Issuing selections
The select class API provided by the Manager allows you to instate selection to the AWE's features.
These API allow you to configure the AWE's Effect Types, Variations and Synthesizer Bank. For User
Bank, a user object module must be specified when using the API. The object module for Banks has the
SBK extension. Individual instruments and banks of instruments uses the same format.

The following functions demostrate how to set the features and load a user define SBK file into the bank.
This example can be added in your program.

#include "windows.h"
#include "AWE_DLL.H"

#define BUF_SIZE 255
#define MAX_USER_BANK 127
#define MAX_INSTR 127

AWEHANDLE hID;
enum SBANK m_CurSynthBank; // Current synthesizer bank
enum TYPEINDEX m_CurEfxType; // Current effects type
enum VARIINDEX m_CurTypeVari[6]; // Current type variations
int m_CurUserBank; // Current user bank number
char cUBankDescriptor[30]; // User Bank Descriptor

void SetSynth(int nSNum)
//
// Configure the hardware with current Synth.
//
{
 LRESULT lResult;

 lResult = AWEManager(hID, AWE_SELECT_SYN_BANK,
 (LPARAM)(WORD)nSNum, 0L);

 if (lResult != AWE_NO_ERR)
 {
 // TO DO:
 // DisplayErrorMsg(lResult);

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 81
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

 }
}

void SetEffects(void)
//
// Configure the hardware with current effects.
//
{
 CParamObject param;
 LRESULT lResult;

 param.m_TypeIndex = m_CurEfxType;
 param.m_VariIndex[0] = m_CurTypeVari[0];
 param.m_VariIndex[1] = m_CurTypeVari[1];
 param.m_VariIndex[2] = m_CurTypeVari[2];
 param.m_VariIndex[3] = m_CurTypeVari[3];
 param.m_VariIndex[4] = m_CurTypeVari[4];
 param.m_VariIndex[5] = m_CurTypeVari[5];

 // TO DO: Display HOUR GLASS

 lResult = AWEManager(hID, AWE_SELECT_EFX_EX,
 (LPARAM)(LPPARAMOBJECT) ¶m, 0L);

 if (lResult != AWE_NO_ERR)
 {
 // TO DO:
 // DisplayErrorMsg(lResult);
 }

 // TO DO: Restore normal arrow cursor
}

void SetUserBank(int nUBNum, char *filename, int nStrlen)
//
// Configure the User Bank.
//
{
 CBufferObject buffer;
 LRESULT lResult;

 // validate the range first!
 m_CurUserBank = min(MAX_USER_BANK, max(nUBNum, 1));

 // TO DO: Display HOUR GLASS

 buffer.m_Size = nStrlen;
 buffer.m_Flag = OPER_FILE;
 buffer.m_Buffer = (LPSTR)filename;
 lResult = AWEManager(hID,AWE_LOAD_USER_BANK,(LPARAM)(WORD)nUBNum,

(LPARAM)(LPBUFFEROBJECT)&buffer);

 if (lResult != AWE_NO_ERR)
 {
 // TO DO:
 // DisplayErrorMsg(lResult);
 }
 else
 {
 // Update the global user bank descriptor buffer!
 GetUBankDescriptor(nUBNum);
 }

 // TO DO: Restore normal arrow cursor
}

void SetInstr(int nUBNum, int nINum, int nFINum, char *filename,
 int nStrlen)
//
// Download an instrument from a bank file.
// nFINum - Instrument number from the SBK file to download from.
// nINum - Instrument number in the nUBNum bank to download to.
//
{
 char scratch[BUF_SIZE];

SB AWE32 Developer's Information Pack PART III Windows Driver API •• 82
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

 CBufferObject buffer;
 CParamObject param;
 LRESULT lResult;

 // validate the range first!
 nINum= min(MAX_USER_BANK, max(nUBNum, 0));
 nINum= min(MAX_INSTR, max(nINum, 0));

 // TO DO: Display HOUR GLASS

 param.m_UBankIndex = nUBNum;
 param.m_InstrIndex = nINum;

 buffer.m_SizeUsed = nFINum;
 buffer.m_Size = nStrlen;
 buffer.m_Flag = OPER_FILE;
 buffer.m_Buffer = (LPSTR)filename;

 lResult = AWEManager(hID,AWE_LOAD_USER_INSTR,(LPARAM)(LPPARAMOBJECT)
¶m,(LPARAM)(LPBUFFEROBJECT)&buffer);

 if (lResult != AWE_NO_ERR)
 {
 // TO DO:
 // DisplayErrorMsg(lResult);
 }
 else
 {
 // TO DO: Update the instrument descriptor if necessary!
 }

 // TO DO: Restore normal arrow cursor
}

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 83
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

PART IV MIDI NRPN
Implementation

What Is MIDI Non-Registered-Parameter-Number?

Non-Registered Parameter Numbers are used to represent sound or performance parameters, and in the
case of the EMU8000, SoundFont Parameters. NRPN can be transmitted via MIDI, as it is itself a pair of
MIDI controller messages. NRPN consists of

NRPN MSB MIDI Controller 99

NRPN LSB MIDI Controller 98

NRPN MSB and LSB forms a value that indicates the desired sound parameter. After sending NRPN
MSB and LSB messages, MIDI controllers 6 (Data Entry MSB) and 38 (Data Entry LSB) are sent to pass
in the value for the sound parameter.

In general, to send a NRPN message, the following steps are required :

1. send NRPN MSB with MSB of sound parameter

2. send NRPN LSB with LSB of sound parameter

3. send Data Entry MSB with MSB of sound parameter value

4. send Data Entry LSB with LSB of sound parameter value

As NRPN and Data Entry messages are MIDI controller messages, any MIDI sequencer software that
supports editing of controller message are capable of sending them.

Take note that NRPN is MIDI channel oriented, in other words, the NRPN values only affect the current
instrument assigned on the MIDI channel where your NRPN values was sent.

How do I use SBAWE32 NRPN?

For SB AWE32 NRPN to be functional, NRPN MSB has to be 127, and NRPN LSB set to the desired
parameter to be controlled (see the following for a list of available NRPN LSB for each parameter).

Data entry MSB with Data entry LSB together forms a 14bit number. The middle value 8192 (0x2000,
Data MSB = 64 and Data LSB = 0) is taken as value 0. To convert from MSB and LSB to actual value,
here is the equation:

Actual value = (MSB * 128 + LSB) - 8192

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 84
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

To convert a actual value into MSB and LSB, here are the steps:

MSB = (actual value + 8192) / 128

LSB = (actual value + 8192) % 128

A "Reset All Controllers" message (MIDI controller 121) will restore the instrument’s original
SoundFont parameters.

The EMU8000 Sound Architecture

The EMU8000 has an extensive modulation implementation using two sine-wave LFO’s (Low Frequency
Oscillator) and two multi-stage envelope generators.

Modulation means to dynamically change a parameter of an audio signal, whether it be the volume
(amplitude modulation, or tremolo), pitch (frequency modulation, or vibrato) or filter cutoff frequency
(filter modulation, or wah-wah). To modulate something we would require a modulation source, and a
modulation destination. In the EMU8000, the modulation sources are the LFOs and the envelope
generators, and the modulation destinations can be the pitch, the volume or and filter cutoff frequency.

The EMU8000’s LFO’s and envelope generators provides a complex modulation environment. Each
sound producing element of the EMU8000 consists of a resonant low-pass filter, two LFOs, in which one
modulates the pitch (LFO2), and the other modulates pitch, filter cutoff and volume (LFO1)
simultaneously. There are two envelope generators; envelope 1 contours both pitch and filter cutoff
simultaneously, and envelope 2 contours volume. The output stage consists of an effects engine which
mixes the dry signals with the Reverb/chorus level signals to produce the final mix. The diagram on the
next page shows the typical blocks of an EMU8000 sound element.

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 85
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Oscil lator

R e s o n a n t L o w
P a s s F i l t e r A m p l i f i e r

L o w
F r e q u e n c y

O s c i l l a t o r 1

L o w
F r e q u e n c y

O s c i l l a t o r 2

E n v e l o p e
P a r a m e t e r s

Effects
Engine

Audio

E n v e l o p e
P a r a m e t e r s

Min M a x

Min M a x

Min M a x

Min M a x

Min M a x

Min M a x

Min M a x

R e v e r b
C h o r u s

D e l a y F r e q

D e l a y F r e q

L F O 1 t o V o l u m e
T r e m o l o

L F O 1 t o F i l t e r
W a h - W a h

L F O 1 t o P i t c h
V i b r a t o

L F O 2 t o P i t c h
V i b r a t o

R e s o n a n c e

P i t c h E n v e l o p e
M o d u l a t i o n

F i l t e r E n v e l o p e
M o d u l a t i o n

P i t c h / F i l t e r
E n v e l o p e
G e n e r a t o r

V o l u m e
E n v e l o p e
G e n e r a t o r

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 86
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

EMU8000 Sound Elements

The blocks within an EMU8000 sound element can be programmed to produce a variety of sound effects.

Oscillator
An oscillator is the source of an audio signal.

Low Pass Filter
The low pass filter is responsible for modifying the timbres of an instrument. The low pass filter’s filter
cutoff values can be varied from 100 Hz to 8000 Hz. By changing the values of the filter cutoff, a myriad
of analogue sounding filter sweeps can be achieved. An example of a GM instrument that makes use of
filter sweep is instrument number 87, Lead 7 (fifths).

Amplifier
The amplifier determines the loudness of an audio signal.

LFO1
An LFO, or Low Frequency Oscillator, is normally used to periodically modulate, i.e., dynamically
change a sound parameter, whether it be volume (amplitude modulation), pitch (frequency modulation)
or filter cutoff (filter modulation). It operates at sub-audio frequency from 0.042 Hz to 10.71 Hz. The
LFO1 in the EMU8000 modulates the pitch, volume and filter cutoff simultaneously.

LFO2
The LFO2 is similar to the LFO1, except that it modulates only the pitch of the audio signal only.

Filter Resonance
A filter alone would be like an equaliser, making a bright audio signal duller, but the addition of
resonance greatly increases the creative potential of a filter. Increasing the resonance of a filter makes it
emphasis signal at the cutoff frequency, giving the audio signal a subtle “wah-wah”, i.e., imagine a siren
sound going from bright to dull and bright again periodically.

LFO1 to Volume (Tremolo)
As indicated in figure 1, LFO1’s output is routed to the amplifier, with the depth of oscillation
determined by LFO1 to Volume. LFO1 to Volume produces tremolo, which is a periodic fluctuation of
volume. Lets say you are listening to a piece of music on your home stereo system. When you rapidly
increase and decrease the playback volume, you are creating tremolo effect, and the speed in which you
increases and decreases the volume is the tremolo rate (which corresponds to the speed at which the
LFO is oscillating at) . An example of a GM instrument that makes use of LFO1 to Volume is instrument
number 45, Tremolo Strings.

LFO1 to Filter Cutoff (Wah-Wah)
As indicated in figure 1, LFO1’s output is routed to the filter, with the depth of oscillation determined by
LFO1 to Filter. LFO1 to Filter produces a periodic fluctuation in the filter cutoff frequency, producing an
effect very similar to that of a wah-wah guitar (see resonance for a description of “wah-wah”). An

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 87
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

example of a GM instrument that makes use of LFO1 to Filter Cutoff is instrument number 19, Rock
Organ.

LFO1 to Pitch (Vibrato)
As indicated in figure 1, LFO1’s output is routed to the oscillator, with the depth of oscillation
determined by LFO1 to Pitch. LFO1 to Pitch produces a periodic fluctuation in the pitch of the oscillator,
producing a vibrato effect. An example of a GM instrument that makes use of LFO1 to Pitch is instrument
number 57, Trumpet.

LFO2 to Pitch (Vibrato)
The LFO1 in the EMU8000 can simultaneously modulates pitch, volume and filter. LFO2, on the other
hand, modulates only the pitch, with the depth of modulation determined by LFO2 to Pitch. LFO2 to Pitch
produces a periodic fluctuation in the pitch of the oscillator, producing a vibrato effect. When this is
couple with LFO1 to Pitch, a complex vibrato effect can be achieved.

Volume Envelope
The character of a musical instrument is largely determined by it’s volume envelope, the way in which
the level of the sound changes with time. For example, percussive sounds usually starts suddenly and
then die away, whereas a bowed sound might take some time to start and then sustain at a more or less
fixed level.

A six-stage envelope made up the volume envelope of the EMU8000. The six stages are delay, attack,
hold, decay, sustain and release. The stages can be described as follows :

Delay The time between when a key is played and when the attack phase begins

Attack The time it takes to go from zero to the peak (full) level.

Hold The time the envelope will stay at the peak level before starting the decay
phase.

Decay The time it takes the envelope to go from the peak level to the sustain level.

Sustain The level at which the envelope remains as long as a key is held down.

Release The time it takes the envelope to fall to the zero level after the key is
released.

Using these six parameters can yield very realistic reproduction of the volume envelope characteristics
of many musical instruments.

Pitch and Filter Envelope
The pitch and filter envelope is similar to the volume envelope in that it has the same envelope stages.
The difference between them is that whereas the volume envelope contours the volume of the instrument
over time, the pitch and filter envelope contours the pitch and filter values of the instrument over time.
The pitch envelope is particularly useful in putting the finishing touches in simulating a natural
instrument. For example, some wind instruments tends to go slight sharp when they are first blown, and
this characteristics can be simulated by setting up a pitch envelope with a fairly fast attack and decay.
The filter envelope, on the other hand, is useful in creating synthetic sci-fi sound textures. An example of
a GM instrument that makes use of the filter envelope is instrument number 86, Pad 8 (Sweep).

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 88
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Pitch/Filter Envelope Modulation
These two parameters determine that modulation depth of the pitch and filter envelope. In the wind
instrument example above, a small amount of pitch envelope modulation is desirable to simulate it’s
natural pitch characteristics.

SB AWE32 MIDI NRPN List

Note: “Realtime” means that the parameter can also affect a sustaining note. For example, filter sweep
on a sustaining sound can be achieved by sending continuous NRPN LSB 21 (initial filter cutoff).

NRPN LSB 0 (Delay before LFO1 starts)
Realtime : No
Range : [0, 5900]
Unit : 4 milliseconds

LFO1 Delay from 0 to 22 seconds.

NRPN LSB 1 (LFO1 Frequency)
Realtime : Yes
Range : [0, 127]
Unit : 0.084Hz

LFO1 frequency from 0Hz to 10.72 Hz.

NRPN LSB 2 (Delay before LFO2 starts)
Realtime : No
Range : [0, 5900]
Unit : 4 milliseconds

LFO2 Delay from 0 to 22 seconds.

NRPN LSB 3 (LFO2 Frequency)
Realtime : Yes
Range : [0, 127]
Unit : 0.084Hz

LFO2 frequency from 0Hz to 10.72 Hz.

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 89
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

NRPN LSB 4 (Envelope 1 delay time)
Realtime : No
Range : [0, 5900]
Unit : 4 milliseconds

Envelope 1 Delay from 0 to 22 seconds.

NRPN LSB 5 (Envelope 1 attack time)
Realtime : No
Range : [0, 5940]
Unit : Milliseconds

Envelope 1 attack time from 0 to 5.9 seconds.

NRPN LSB 6 (Envelope 1 hold time)
Realtime : No
Range : [0, 8191]
Unit : Milliseconds

Envelope 1 hold time from 0 to 8 seconds.

NRPN LSB 7 (Envelope 1 decay time)
Realtime : No
Range : [0, 5940]
Unit : 4 Milliseconds

Envelope 1 decay time from 0.023 to 23.7 seconds.

NRPN LSB 8 (Envelope 1 sustain level)
Realtime : No
Range : [0, 127]
Unit : 0.75dB

Envelope 1 sustain level from full level down to off (0.75 dB step).

NRPN LSB 9 (Envelope 1 release time)
Realtime : No
Range : [0, 5940]
Unit : 4 milliseconds

Envelope 1 release time from 0.023 to 23.7 seconds.

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 90
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

NRPN LSB 10 (Envelope 2 delay time)
Realtime : No
Range : [0, 5900]
Unit : 4 milliseconds

Envelope 2 Delay from 0 to 22 seconds.

NRPN LSB 11 (Envelope 2 attack time)
Realtime : No
Range : [0, 5940]
Unit : Milliseconds

Envelope 2 attack time from 0 to 5.9 seconds.

NRPN LSB 12 (Envelope 2 hold time)
Realtime : No
Range : [0, 8191]
Unit : Millisecond

Envelope 2 hold time from 0 to 8 seconds.

NRPN LSB 13 (Envelope 2 decay time)
Realtime : No
Range : [0, 5940]
Unit : 4 milliseconds

Envelope 2 decay time from 0.023 to 23.7 seconds.

NRPN LSB 14 (Envelope 2 sustain level)
Realtime : No
Range : [0, 127]
Unit : 0.75dB

Envelope 2 sustain level from full level down to off.

NRPN LSB 15 (Envelope 2 release time)
Realtime : No
Range : [0, 5940]
Unit : 4 milliseconds

Envelope 2 release time from 0.023 to 23.7 seconds.

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 91
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

NRPN LSB 16 (Initial Pitch)
Realtime : Yes
Range : [-8192, 8191]
Unit : cents

Pitch tuning between -8192 and 8191 cents.

NRPN LSB 17 (LFO1 to Pitch)
Realtime : Yes
Range : [-127, 127]
Unit : 9.375 cents

If data value is greater than 0, this will cause a positive (from 0 to maximum) of 1 octave shift at LFO
peak. On the other hand, if data value is smaller than 0, this will cause a negative (from o to minimum) of
1 octave shift at LFO peak.

NRPN LSB 18 (LFO2 to Pitch)
Realtime : Yes
Range : [-127, 127]
Unit : 9.375 cents

If data value is greater than 0, this will cause a positive (from 0 to maximum) of 1 octave shift at LFO
peak. On the other hand, if data value is smaller than 0, this will cause a negative (from o to minimum) of
1 octave shift at LFO peak.

NRPN LSB 19 (Envelope 1 to Pitch)
Realtime : No
Range : [-127, 127]
Unit : 9.375 cents

If data value is greater than 0, this will cause a positive (from 0 to maximum) of 1 octave shift at
envelope peak. On the other hand, if data value is smaller than 0, this will cause a negative (from 0 to
minimum) of 1 octave shift at envelope peak.

NRPN LSB 20 (LFO1 to Volume)
Realtime : Yes
Range : [0, 127]
Unit : 0.1875 dB

Data value smaller than 64 causes a positive phase (from 0 to maximum) volume modulation via LFO1
with magnitude of 12 dB at LFO peak. On the other hand, data value greater than or equals to 64 causes a
negative phase (from 0 to minimum) volume modulation via LFO1 with magnitude of 12 dB at LFO peak.

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 92
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

NRPN LSB 21 (Initial Filter Cutoff)
Realtime : Yes
Range : [0, 127]
Unit : 62Hz

Filter cutoff from 100Hz to 8000Hz.

NRPN LSB 22 (Initial Filter Resonance Coefficient)
Realtime : No
Range : [0, 127]

The EMU8000 had a built in resonance coefficient table comprising of 16 entries. Values 0-7 will select
the first (0) entry, values 8-15 selects the second (1) entry and so on.

Coeff Low Low High High DC
Fc(Hz) Q(dB) Fc(kHz) Q(dB) Attn(dB)

0 92 5 Flat Flat -0.0

1 93 6 8.5 0.5 -0.5

2 94 8 8.3 1 -1.2

3 95 10 8.2 2 -1.8

4 96 11 8.1 3 -2.5

5 97 13 8.0 4 -3.3

6 98 14 7.9 5 -4.1

7 99 16 7.8 6 -5.5

8 100 17 7.7 7 -6.0

9 100 19 7.5 9 -6.6

10 100 20 7.4 10 -7.2

11 100 22 7.3 11 -7.9

12 100 23 7.2 13 -8.5

13 100 25 7.1 15 -9.3

14 100 26 7.1 16 -10.1

15 100 28 7.0 18 -11.0

NRPN LSB 23 (LFO1 to Filter Cutoff)
Realtime : Yes
Range : [-64, 63]
Unit : 56.25 cents

Positive data value causes a positive phase (from 0 to maximum) filter modulation via LFO1 with
magnitude of 3 octave at LFO peak. On the other hand, negative data value causes a negative phase (from
0 to minimum) filter modulation via LFO1 with magnitude of 3 octave at LFO peak.

SB AWE32 Developer's Information Pack PART IV MIDI NRPN Implementation •• 93
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

NRPN LSB 24 (Envelope 1 to Filter Cutoff)
Realtime : No
Range : [-127, 127]
Unit : 56.25 cents

Data value greater than 0 causes a positive phase (from 0 to maximum) filter modulation via Envelope1
with magnitude of 6 octave at envelope peak. On the other hand, value smaller than 0 causes a negative
phase (from 0 to minimum) filter modulation via Envelope 1 with magnitude of 6 octave at envelope
peak.

NRPN LSB 25 (Chorus Effects Send)
Realtime : No
Range : [0, 255]

Chorus send, with 0 being the driest (no chorus effects processing), and 255 being the wettest (full
chorus effect processing).

NRPN LSB 26 (Reverb Effects Send)
Realtime : No
Range : [0, 255]

Reverb send, with 0 being the driest (no reverb effects processing), and 255 being the wettest (full
reverb effect processing).

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 94
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

PART V 3D Positional Audio API

Library Overview

The 3D Positional Audio Library provides programmers a low-level access to audio spatialization
algorithms implemented on the SB AWE32. The library provides programmers the ability to create and
move in 3D space basic audio spatialization objects such as sound emitters and receivers. The library
attempts to control the apparent location of sound emitters relative to a receiver by modeling a small set
of physical and psycho-acoustic phenomena.

3D Positional Audio Overview
The technology of spatial audio breaks down into two basic categories, depending on the techniques
employed to produce the spatial experience.

Passive Stereo Enhancement

Passive Stereo Enhancement systems are, as the name implies, methods for improving the three
dimensional nature of an already captured sound image, without any user control of apparent sound
position. A Stereo Enhancement system is any system which takes as its sole realtime input a two
channel stereo audio signal, and outputs a (hopefully improved) two channel stereo audio signal. The
systems may, of course, have controls which determine the degree of enhancement. These systems have
no possibility for real time positioning and controlled movement of sound sources, since they can only
accept a signal that has already had all of its components mixed together.

Parametric 3D Audio

In Parametric Spatialization, one or more monophonic channels are reproduced according to realtime
dimensional parameters specifying the position of objects in the soundfield. Unlike other techniques,
Parametric Spatialization determines the stereo audio image synthetically, based on realtime input.
Parametric Spatialization is thus interactive and user controllable.

Which 3D Audio Cues are most robust?

People can localize sounds in 3D space well, but in fact, a variety of consistent cues (or clues) are
required by our perception mechanism to determine where a sounds is coming from in three dimensional
space. Suprisingly, one of the most important perceptual mechanisms that we use to determine a sound's
location is head movement! Why this is true tells us a lot about what we can honestly expect from
synthetic spatial audio systems.

By far, the most robust cue for perceiving spatial location is "lateralization", or the ability to determine
whether a sound is on our left or right side. Even people who are deaf in one ear are fairly good at
lateralization.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 95
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

The next best cue is making the determination whether a sound is on the median plane or not. Substantial
research shows that we are also good at this distinction.

Beyond these two factors, people are actually quite weak at determining spatial location, without head
movement. This may seem quite suprising, but research subjects who have their head immobilized in
research test conditions consistently identify sounds which are actually coming from in front of them as
coming from behind them. Some speculate that this so called front-back confusion may have an
evolutionary advantage, since unseen sounds might be predators! Elevation cues are also quite fragile.

Finally, another of the most important cues for a sound's location is vision! If we see an object that we
believe to be making a sound, then we think the sound is coming from that object. This phenomenon has
been exploited for years by ventriloquists. This phenomenon can be exploited just as well by games
developers in that on-screen visual cues can also help establish the apparent location of a sound source.

In contrast, an off-screen sound source can help to direct the viewer's attention to the (unseen) apparent
source of that sound. The most recent generation of games adopts a first person perspective which is
ideally suited for spatial audio, in that the user can direct the view of the game in different directions. If
robust cues are employed to attract the viewer's attention, the viewer can be cued to direct the view
towards the unseen sound. The strategy of directing the view from audio cues will only be as strong as
the audio cues, however.

Head Tracking

If a 3D audio spatialization system is producing audio for headphones and the listener is using a head
tracking system, so that the position and orientation of the listener's head is known in read time, the 3D
audio system can provide the correct left-right cues to simulate the actual behavior that physical sounds
have in physical space. Head tracking is widely known to be able to significantly enhance spatial audio
cues dramatically.

People are not likely to start wearing head trackers and headphones in large numbers any time soon. For
one thing, head tracking hardware is quite expensive. Secondly, it is cumbersome and isolates a person
from the room environment.

Instead, people mostly listen to multimedia audio over speakers. Speaker playback of spatial audio is
still quite practical, but there will always be limitations. The developer should not expect robust front-
back and elevation cues without head tracking headphone audio displays.

However, distance cues and lateral cues should be very robust. Interestingly, distance cues are quite
practical even with only one speaker!

AWE-32 Implementation of 3D Audio Cues

The AWE-32 implementation of Parametric 3D Audio provides strong lateralization and distance cues.
The lateralization cues have been found to be quite robust either on speakers or on headphones. They do
not seem to suffer a lot from a small "sweet spot" either. The sweet spot is the region midway between
two stereo loudspeakers where the stereo effect is strongest. While the optimum AWE-32 spatial effect
is still in the center between loudspeakers, listeners can be almost anywhere between a pair of
loudspeakers and the lateralization effect will still be quite clear. Many existing 3D audio techniques
have a very sensitive sweet spot, and are severely degraded by listening off-center.

Distance cues will work even on a single speaker.

Dynamic Versus Static Cues

Dynamic spatial cues are far more robust in both the real world and in synthetic spatialization. If a
sound emitter (or a receiver) is moving, then the change in spatial location will create a much stronger
impression than a sound that is fixed, relative to a receiver.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 96
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

This phenomenon has been well-documented in the research literature on all spatial perception. We
evolved to sense change, and static perceptual cues are usually unimportant, and hence tend to be
ignored.

What sounds are best suited for spatialization?

Sound sources that have a broad spectrum and that have significant time domain amplitude envelope
features are best suited for parametric 3D audio. Smooth steady state tones will localize very poorly.
For example, with the new electronic telephones, it is often hard to figure out whose office their rings
are coming from. The old fashioned bell ringers have sharp transients and broad spectral features,
making then much easier to localize.

Typical sounds that will localize well include explosions, airplane and helicopter sounds, cracks, snaps
and other game style sound effects.

Typical sounds that will localize poorly include pure steady tones and simple waveforms.

SB AWE32 DOS 3D Positional Audio Library

The SB AWE32 implementation of the 3D Positional Audio Library imposes some limits because of its
tight integration with the MIDI engine.

• The sound samples (wave files) have to be preloaded in a form of SoundFont

 It is recommended that users create SoundFonts using our Vienna SoundFont editor so that
loop points of sound samples are marked properly. The loop length must be a least 256
samples. Note that the envelope and LFO parameters set in the SoundFonts are ignored.
Once a SoundFont is loaded, multiple emitters can be created out of a sound sample in the
SoundFont using c3daSetEmitterMIDISource.

• Multi-layering in the SoundFont is not supported

 Note that if multi-layering is present in a SoundFont, only the sound sample in the first
layer is used.

• Only a maximum of MAX_EMITTER number of emitters can be created

Emitters share the polyphonies with the MIDI engine. As more emitters are created, more
polyphonies are taken away from the MIDI engine. When the MIDI engine has not enough
polyphonies, note stealing will occur. This means that old notes will be turned off to make
room for new notes. If you plan to play a dense piece of music, try to release some of the
emitters first by calling c3daDestroyEmitter.

• Set emitter position update frequency to about 20Hz

Update the emitter positions 20 times per second. At this rate, the library could provide the
optimum spatialization effects.

Types and Structures

The types and structures used by the 3D Positional Audio Library are:

• c3daEmitter - an emitter object.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 97
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

• c3daReceiver - a receiver object.

• c3daError - the return type from all 3D Postional Audio Library functions. Possible
values are c3daSUCCESS and c3daFAILURE.

• c3daSoundState - specifies a sound output or “play” state. Possible values are
c3daSTART, c3daSTOP, and c3daPAUSE.

• The (x, y, z) coordinates are of type int . They must be in the range of between -32767 to
32767.

System Functions

This group of API consists of the following :

• c3daInit

• c3daEnd

• c3daSetDopplerEffect

• c3daSetMaxDistance

c3daInit
c3daError
PASCAL
c3daInit(VOID)

Actions Initialize the 3D Positional Audio Library and must be called before any other calls to
the library.

Parameters None.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

Remarks A single receiver (with an orientation where the head is facing along the positive x-
axis and the left ear is on the positive y-axis) is also automatically created and used as
the active receiver. Use c3daGetActiveReceiver to retrieve it.

c3daEnd
c3daError
PASCAL
c3daEnd(VOID)

Actions Shuts down the 3D Positional Audio Library and releases all of its resources.
c3daEnd must be called before an application exits.

Parameters None.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 98
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks Any calls to the library after a call to c3daEnd will result in strange and unusual
behavior (except for c3daInit to reinitialize the library).

c3daSetDopplerEffect
c3daError
PASCAL
c3daSetDopplerEffect(UINT uDoppEffect)

Actions Set the Doppler effect for all emitters. By using this function, the user can control the
“magnitude” of the Doppler effects that may be heard as a result of emitter position
changes.

Parameters uDoppEffect

The valid range for uDoppEffect is 0-255 where a value of 0 turns off Doppler effects
completely and a value of 255 turns on the full effects of Doppler. The default value
is 127.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

c3daSetMaxDistance
c3daError
PASCAL
c3daSetMaxDistance(int MaxDistance)

Actions Set the maximum distance that emitter volumes will attenuate across. At maximum
distance, attenuation is at maximum (-96dB). By using this maximum distance, the user
can adjust the distance attenuation that correspond to modeled world.

Parameters MaxDistance

The valid range for MaxDistance is 1 - 32767.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

Emitter Functions

This group of API consists of the following :

• c3daCreateEmitter

• c3daDestroyEmitter

• c3daSetEmitterPosition

• c3daSetEmitterOrientation

• c3daSetEmitterSoundState

• c3daSetEmitterGain

• c3daSetEmitterPitchInc

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 99
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

• c3daSetEmitterDelay

• c3daSetEmitterMIDISource

c3daCreateEmitter
c3daError
PASCAL
c3daCreateEmitter(

c3daEmitter FAR* lpEm,
int x,
int y,
int z

)

Actions Initializes an emitter object and places an omni-directional sound emitter object in 3D
space.

Parameters lpEm

Specify a pointer to an emitter object.

x, y, z

Specify the initial coordinates of the emitter. These coordinates are relative to the
active receiver.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

Remarks By default an emitter is created in a “stopped” state. Use the
c3daSetEmitterSoundState to change an emitter’s sound output state.

c3daDestroyEmitter
c3daError
PASCAL
c3daDestroyEmitter(c3daEmitter FAR* lpEm)

Actions Destroys an emitter object. All resources associated with the emitter are released.

Parameters lpEm

Specify a far pointer to an emitter object.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 100
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

c3daSetEmitterPosition
c3daError
PASCAL
c3daSetEmitterPosition(

c3daEmitter FAR* lpEm,
int x,
int y,
int z

)

Actions Place an emitter object at a position in 3D space relative to the active receiver.

Parameters lpEm

Specify a far pointer to an emitter object.

x, y, z

Specify the new coordinates of the emitter relative to the active receiver.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

Remarks Calling this function could potentially alter the sound output due to the effects of the
audio spatialization algorithms. Note that all receivers have a fixed orientation where
the head is facing along the positive x-axis and the left ear is along the positive y-axis.
To implement a receiver facing the positive y-axis, following transformation is needed
before calling c3daSetEmitterPosition. Please refer to section Implementing
Receiver Orientation for more information.

int new_x = y - receiver_y;
int new_y = -(x - receiver_x);
int new_z = z - receiver_z;
c3daSetEmitterPosition(&EmitterObj, new_x, new_y, new_z);

c3daSetEmitterOrientation
c3daError
PASCAL
c3daSetEmitterOrientation(

c3daEmitter FAR* lpEm,
int x,
int y,
int z

)

Actions Set the orientation of an emitter.

Parameters lpEm

Specify a far pointer to an emitter object.

x, y, z

Specify the orientation vector.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 101
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks At this time this function has no effect since only omni-directional emitters can be
created.

c3daSetEmitterSoundState
c3daError
PASCAL
c3daSetEmitterSoundState(

c3daEmitter FAR* lpEm,
 c3daSoundState state
)

Actions Change the sound output state of an emitter.

Parameters lpEm

Specify a far pointer to an emitter object.

state

Possible values are: c3daSTART, c3daSTOP, and c3daPAUSE.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

c3daSetEmitterGain
c3daError
PASCAL
c3daSetEmitterGain(c3daEmitter FAR* lpEm, UINT uGain)

Actions Change the output gain of an emitter.

Parameters lpEm

Specify a far pointer to an emitter object.

uGain

The valid range for uGain is 0-255 where 0 causes the emitter to be muted (but still
running) and 255 represents unity gain (the default).

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

c3daSetEmitterPitchInc
c3daError
PASCAL
c3daSetEmitterPitchInc(c3daEmitter FAR* lpEm, int inc)

Actions Increment or decrement the pitch of an emitter.

Parameters lpEm

Specify a far pointer to an emitter object.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 102
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

inc

The increment or decrement in number of cents. A positive value increases the current
pitch and a negative value decreases the current pitch. The range of permissible values
depends on the sample sampling rate and current Doppler shift. Typically it has a max
of about 2000 cents for a 44.1kHz sample.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

c3daSetEmitterDelay
c3daError
PASCAL
c3daSetEmitterDelay(c3daEmitter FAR* lpEm, unsigned delay)

Actions Set the delay time for the reverberation channel of the emitter.

Parameters lpEm

Specify a far pointer to an emitter object.

delay

The delay time in the number of sound samples. For example, 132 samples is
approximately 3 milliseconds in 44.1kHz.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

c3daSetEmitterMIDISource
c3daError
PASCAL
c3daSetEmitterMIDISource(

c3daEmitter FAR* lpEm,
 UINT uBank,

UINT uProgram,
UINT uKeynum

)

Actions Associate a MIDI source with an emitter.

Parameters lpEm

Specify a far pointer to an emitter object.

uBank, uProgram, uKeynum

Specify the MIDI source.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 103
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Receiver Functions

This group of API consists of the following :

• c3daCreateReceiver

• c3daDestroyReceiver

• c3daSetActiveReceiver

• c3daGetActiveReceiver

• c3daSetReceiverPosition

c3daCreateReceiver
c3daError
PASCAL
c3daCreateReceiver(

c3daReceiver FAR* lpRx,
int x,
int y,
int z

)

Actions Initialize a receiver object and places it in 3D space.

Parameters lpRx

Specify a far pointer to a receiver object.

x, y, z

Specify the initial coordinates of the receiver.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

Remarks The position of a receiver is used by the audio spatialization algorithms if/when this
receiver becomes the active receiver. The orientation of receivers is fixed to be
facing along the positive x-axis with the left ear along the positive y-axis.

c3daDestroyReceiver
c3daError
PASCAL
c3daDestroyReceiver(c3daReceiver FAR* lpRx)

Actions Destroy a receiver object. All resources associated with the receiver are released.

Parameters lpRx

Specify a far pointer to a receiver object.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 104
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Remarks If lpRx is the active receiver, then destruction of this receiver will cause all sound
output to cease until a new active receiver is specified.

c3daSetActiveReceiver
c3daError
PASCAL
c3daSetActiveReceiver(c3daReceiver FAR* lpRx)

Actions Set the current active receiver. The active receiver is the receiver for which audio
spatialization algorithms are applied.

Parameters lpRx

Specify a far pointer to a receiver object.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

Remarks On the AWE, multiple receivers can be created; however, there can only be one active
receiver at a time.

c3daGetActiveReceiver
c3daError
PASCAL
c3daGetActiveReceiver(c3daReceiver FAR* FAR* lpRx)

Actions Return the current active receiver.

Parameters lpRx

Specify a far pointer to a far pointer to a receiver object.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

c3daSetReceiverPosition
c3daError
PASCAL
c3daSetReceiverPosition(

c3daReceiver FAR* lpRx,
int x,
int y,
int z

)

Actions Place a receiver in 3D space. Correspondingly, the positions of all existing emitters
are updated internally.

Parameters lpRx

Specify a far pointer to a receiver object.

x, y, z

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 105
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

Specify the new coordinates of the receiver.

Return Return c3daSUCCESS upon success and c3daFAILURE otherwise.

Remarks If lpRx is the active receiver, then movement of this receiver may cause a
perceivable change in sound due to the effects of the audio spatialization algorithms.

Programming Example

This chapter gives a simple example of using the 3D Positional Audio API and position the emitter using
a mouse pointer. Please refer to the chapter SoundFont Bank And Downloadable DRAM Services and
Real and Protected Mode API Programming Guide for explanation on using the MIDI and SoundFont
libraries.

#include <dos.h>
#include <stdio.h>
#include "ctaweapi.h"

volatile int count = 0;
void (interrupt far* prev_intr)(); /* previous interrupt handler */

newintr is a interrupt handler that hooks on to interrupt 1CH to get a 18.2Hz timer interrupt. The variable
count is incremented and serve as an indicator to the position update loop to update the emitter position.

void interrupt far newintr()
{
 ++count;
 _chain_intr(prev_intr); /* chain to previous interrupt */
}

Start of program.

main()
{
 int current;
 int x, y;
 FILE *fp;
 long bsize[2];
 SOUND_PACKET sp;
 WAVE_PACKET wp;
 c3daEmitter em;
 union REGS regs;
 char preset[256];
 char packet[PACKETSIZE];

For simplicity, assume that EMU8000 is at base addresses 0x620, 0x624 and 0x628. In Windows 95, a
recommended method would be to retrieve the base I/O address settings from the file CTPNP.CFG
located in the Windows directory. Refer to PART II DOS Real/Protected Mode API, under the
heading CTPNP.CFG Sample for more details on getting the base I/O addresses.

 if (awe32DetectEx(0x620, 0x624, 0x628)) {
 printf("Cannot detect SB AWE32\n");
 return -1;
 }
 awe32InitHardware();
 if (awe32DramSize == 0) {
 printf("Not enough DRAM\n");
 return -1;
 }

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 106
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

 awe32SoundPad.SPad1 = awe32SPad1Obj; /* install GM presets */
 awe32SoundPad.SPad2 = awe32SPad2Obj;
 awe32SoundPad.SPad3 = awe32SPad3Obj;
 awe32SoundPad.SPad4 = awe32SPad4Obj;
 awe32SoundPad.SPad5 = awe32SPad5Obj;
 awe32SoundPad.SPad6 = awe32SPad6Obj;
 awe32SoundPad.SPad7 = awe32SPad7Obj;
 awe32InitMIDI();

Detect and initialize the mouse driver. This program won’t run without a mouse.

 regs.x.ax = 0;
 int86(0x33, ®s, ®s);
 if (regs.x.ax == 0) {
 printf("Cannot initialize mouse\n");
 return -1;
 }
 regs.x.ax = 0x1;
 int86(0x33, ®s, ®s);

Loading a sound sample (sound.raw) as SoundFont into MIDI bank 1, instrument 0.

 sp.total_banks = 2;
 bsize[0] = 0;
 bsize[1] = awe32DramSize * 2; /* use all available DRAM */
 sp.banksizes = bsize;
 awe32DefineBankSizes(&sp);
 fp = fopen("sound.raw", "rb");
 if (!fp) {
 printf("Cannot open \"sound.raw\"\n");
 return -1;
 }

 wp.tag = 0x101;
 wp.bank_no = 1;
 wp.sample_size = 49429; /* hard-coded info about sound.raw */
 wp.samples_per_sec = 44100;
 wp.bits_per_sample = 16;
 wp.no_channels = 1;
 wp.looping = 1;
 wp.startloop = 0;
 wp.endloop = 49425;
 wp.release = 0;
 if (awe32WPLoadRequest(&wp)) {
 printf("awe32WPLoadRequest failed\n");
 return -1;
 }

 wp.data = packet;
 while (wp.no_wave_packets--) {
 fread(packet, 1, PACKETSIZE, fp);
 awe32WPStreamWave(&wp);
 }
 fclose(fp);

 wp.presets = preset; /* SoundFont preset space */
 awe32WPBuildSFont(&wp);

Initialize the 3D Positional Audio Library and creative an emitter base on the loaded sound sample.

 c3daInit();
 c3daCreateEmitter(&em, 1, 0, 60);
 c3daSetEmitterMIDISource(&em, 1, 0, 60);
 c3daSetEmitterSoundState(&em, c3daSTART);

Save current interrupt vector and hook on to interrupt 1CH.

 prev_intr = _dos_getvect(0x1c);
 _dos_setvect(0x1c, newintr);

The position update loop. Loop forever until a key is hit. Once count changes its value, update the emitter
position.

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 107
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

 current = count;
 while (!kbhit()) {
 while (current == count) ; /* wait til count changes */
 current = count;
 regs.x.ax = 3;
 int86(0x33, ®s, ®s); /* get mouse position */
 x = regs.x.cx - 320;
 y = regs.x.dx - 96;
 /* rotate -90 degree along z-axis */
 c3daSetEmitterPosition(&em, -y/2, -x/2, 0);
 }
 getch();

Terminates.

 _dos_setvect(0x1c, prev_intr);
 regs.x.ax = 0x21;
 int86(0x33, ®s, ®s);
 awe32Terminate();

 return 0;
}

Implementing Receiver Orientation

For efficiency reasons, the 3D Positional Audio Library does not provide the ability to change a
receiver’s orienation - all receivers have a fixed orientation where the head is facing along the positive
x-axis and the left ear is along the positive-y-axis. This chapter gives a simple example of how to
implement receiver orientation functionality.

The basic idea is that changing a receiver’s orientation is equivalent to appropriately moving all the
emitters around a receiver with a fixed orientation. This example uses yaw, pitch, and roll to transform
a recevier’s orientation from the default fixed orientation to a new one. To equivalently move the
emitters, the “inverse” transform is applied to all the emitters.

/*
 * This example is sample code to handle receiver orientation since
 * the basic c3da core does not allow a change in receiver orienation.
 * There are two routines defined in this example:
 *
 * setEmitterPosition - a replacement for c3daSetEmitterPosition
 * setReceiverOrientation - a new routine to handle receiver
orientation
 */

#include <math.h>

#include "ctaweapi.h"

#define NUMBER_OF_EMITTERS 4
#define DEG2RAD 0.017453f;

/*
 * example utility structs
 */

typedef struct _Emitter {
 int x; /* world x position */
 int y; /* world y position */
 int z; /* world z position */
 c3daEmitter em; /* handle to c3da core emitter */

/* need to be "created" using */
/* c3daCreateEmitter */

} Emitter;

typedef struct _Receiver {
 float a[9]; /* rotation matrix for yaw, pitch, roll */

/* A = | a[0] a[1] a[2] | */

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 108
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

/* | a[3] a[4] a[5] | */
/* | a[6] a[7] a[8] | */

 c3daReceiver rx; /* handle to c3da core receiver */
/* need to be "created" using */
/* c3daCreateReceiver */

} Receiver;

/*
 * as an example, allocate some global emitters and one receiver
 */

Receiver thisRx;
Emitter Em[NUMBER_OF_EMITTERS];

/*
 * sample "world" setEmitterPosition routine
 */

void
setEmitterPosition(Emitter* pEm, int x, int y, int z)
{

 int new_x, new_y, new_z;

 /*
 * save the world coordinates
 */

 pEm->x = x;
 pEm->y = y;
 pEm->z = z;

 /*
 * rotate this emitter so that it is relative to the fixed
 * receiver in the c3da core
 */

 new_x = thisRx.a[0]*x + thisRx.a[1]*y + thisRx.a[2]*z;
 new_y = thisRx.a[3]*x + thisRx.a[4]*y + thisRx.a[5]*z;
 new_z = thisRx.a[6]*x + thisRx.a[7]*y + thisRx.a[8]*z;

 /*
 * now tell the c3da core about the new position
 */

 c3daSetEmitterPosition (&(pEm->em), new_x, new_y, new_z);

}

/*
 * sample "world" setReceiverOrientation routine
 *
 * Arguments:
 * yaw - rotation around the z-axis (-180 to 180 degrees)
 * pitch - rotation around the y-axis (-180 to 180 degrees)
 * roll - rotation around the x-axis (-180 to 180 degrees)
 *
 * Notes:
 * o order of rotations - roll, pitch, yaw
 * o Instead of actually changing the orientation of the receiver,
 * we equivalently move all the emitters around the fixed receiver
 * in the c3da core. The rotation matrix used to move the emitters
 * is simply the transpose of the "composite" rotation matrix defined
 * by yaw, pitch, roll and the order of rotations.
 */

void
setReceiverOrientation(int yaw, int pitch, int roll)
{

 float yaw_f;
 float pitch_f;
 float roll_f;

 /*
 * convert yaw, pitch, and roll to radians

SB AWE32 Developer's Information Pack PART V 3D Positional Audio API •• 109
Copyright Creative Technology Ltd., 1994-1996 Version 3.00

 */

 yaw_f = DEG2RAD * (float) yaw;
 pitch_f = DEG2RAD * (float) pitch;
 roll_f = DEG2RAD * (float) roll;

 /*
 * setup the inverse rotation matrix to handle yaw, pitch, and roll
 */

 thisRx.a[0] = cos(yaw_f)*cos(pitch_f);
 thisRx.a[1] = sin(yaw_f)*cos(pitch_f);
 thisRx.a[2] = -sin(pitch_f);
 thisRx.a[3] = -sin(yaw_f)*cos(roll_f) +

cos(yaw_f)*sin(pitch_f)*sin(roll_f);
 thisRx.a[4] = cos(yaw_f)*cos(roll_f) +

sin(yaw_f)*sin(pitch_f)*sin(roll_f);
 thisRx.a[5] = cos(pitch_f)*sin(roll_f);
 thisRx.a[6] = sin(yaw_f)*sin(roll_f) +

cos(yaw_f)*sin(pitch_f)*cos(roll_f);
 thisRx.a[7] = -cos(yaw_f)*sin(roll_f) +

sin(yaw_f)*sin(pitch_f)*cos(roll_f);
 thisRx.a[8] = cos(pitch_f)*cos(roll_f);

 /*
 * loop over the emitters letting them use the new orientation
 */

 for (i = 0; i < NUMBER_OF_EMITTERS; i++)
 setEmitterPosition(&Em[i], Em[i].x, Em[i].y, Em[i].z);

}

