-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_classifier_crossentropyloss.py
211 lines (181 loc) · 9.31 KB
/
mnist_classifier_crossentropyloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import numpy as np
import torch
import torchvision
from torch import nn, optim
from torch.utils.data.sampler import SequentialSampler, SubsetRandomSampler
from common import train, test, save_state, save_data, draw_line_graph, draw_multi_lines_graph
# model
class MnistClassifierCrossEntropyLoss(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(in_features=(28 * 28), out_features=10) # 784 -> 10
def forward(self, x):
x = x.view(-1, (28 * 28)) # flatten
x = self.fc(x)
return x
# experiment
def mnist_classifier_crossentropyloss():
# paths
path = dict()
path['project'] = os.path.dirname(os.path.abspath(__file__))
path['state'] = os.path.join(path['project'], 'epoch')
path['dataset'] = os.path.join(path['project'], 'dataset')
path['graph'] = os.path.join(path['project'], 'graph')
path['array'] = os.path.join(path['project'], 'array')
for key, value in path.items():
if not os.path.exists(path[key]):
os.mkdir(path[key])
# parameters
batch_size = 1000
number_of_epochs = 20
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'cpu'
mean = 0.1307
std = 0.3081
loss = nn.CrossEntropyLoss()
info_per_batch = 6
validation_ratio = 0.1
# transform
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(mean,), std=(std,))
])
# dataset
train_dataset = torchvision.datasets.MNIST(root=path['dataset'], train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.MNIST(root=path['dataset'], train=False, transform=transform, download=True)
# validation dataset
validation_limit = int((1 - validation_ratio) * len(train_dataset))
index_list = list(range(len(train_dataset)))
train_indexes, validation_indexes = index_list[:validation_limit], index_list[validation_limit:]
train_sampler = SubsetRandomSampler(train_indexes)
validation_sampler = SequentialSampler(validation_indexes)
# dataset loaders
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, sampler=train_sampler)
validation_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size,
sampler=validation_sampler)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size)
# model
model = MnistClassifierCrossEntropyLoss().to(device)
# optimizer
optimizer = optim.SGD(params=model.parameters(), lr=learning_rate)
epochs = np.arange(start=1, stop=(number_of_epochs + 1), step=1, dtype=int)
print('Mnist Classifier CrossEntropyLoss')
train_losses = []
train_accuracies = []
validation_losses = []
validation_accuracies = []
test_losses = []
test_accuracies = []
for epoch in epochs:
info = 'Epoch {epoch_index}/{number_of_epochs}'
print(info.format(epoch_index=epoch, number_of_epochs=number_of_epochs))
# train
train_loss, train_accuracy = train(model=model,
device=device,
loader=train_loader,
optimizer=optimizer,
loss=loss,
info_per_batch=info_per_batch)
info = 'Train: Average Loss: {train_loss:.5f}, Accuracy: % {train_accuracy:.2f}'
print(info.format(train_loss=train_loss, train_accuracy=(100 * train_accuracy)))
train_losses.append(train_loss)
train_accuracies.append(train_accuracy)
# validation
validation_loss, validation_accuracy = test(model=model,
loader=validation_loader,
device=device,
loss=loss,
info_per_batch=info_per_batch,
info_name='Validation')
info = 'Validation: Average Loss: {validation_loss:.5f}, Accuracy: % {validation_accuracy:.2f}'
print(info.format(validation_loss=validation_loss, validation_accuracy=(100 * validation_accuracy)))
validation_losses.append(validation_loss)
validation_accuracies.append(validation_accuracy)
# test
test_loss, test_accuracy = test(model=model,
loader=test_loader,
device=device,
loss=loss,
info_per_batch=info_per_batch,
info_name='Test')
info = 'Test: Average Loss: {test_loss:.5f}, Accuracy: % {test_accuracy:.2f}'
print(info.format(test_loss=test_loss, test_accuracy=(100 * test_accuracy)))
test_losses.append(test_loss)
test_accuracies.append(test_accuracy)
# epoch state
state_file_name = 'mnist_classifier_crossentropyloss_epoch_{epoch_index}.pkl'.format(epoch_index=epoch)
save_state(model=model, directory=path['state'], file_name=state_file_name)
# train loss
save_data(array=train_losses, directory=path['array'],
file_name='mnist_classifier_crossentropyloss_train_loss.npy')
draw_line_graph(x=epochs, y=train_losses,
x_label='Epoch', y_label='Loss',
title='Mnist Classifier CrossEntropyLoss Train Loss',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_train_loss.png')
# train accuracy
save_data(array=train_accuracies, directory=path['array'],
file_name='mnist_classifier_crossentropyloss_train_accuracy.npy')
draw_line_graph(x=epochs, y=train_accuracies,
x_label='Epoch', y_label='Accuracy',
title='Mnist Classifier CrossEntropyLoss Train Accuracy',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_train_accuracy.png')
# validation loss
save_data(array=validation_losses, directory=path['array'],
file_name='mnist_classifier_crossentropyloss_validation_loss.npy')
draw_line_graph(x=epochs, y=validation_losses,
x_label='Epoch', y_label='Loss',
title='Mnist Classifier CrossEntropyLoss Validation Loss',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_validation_loss.png')
# validation accuracy
save_data(array=validation_accuracies, directory=path['array'],
file_name='mnist_classifier_crossentropyloss_validation_accuracy.npy')
draw_line_graph(x=epochs, y=validation_accuracies,
x_label='Epoch', y_label='Accuracy',
title='Mnist Classifier CrossEntropyLoss Validation Accuracy',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_validation_accuracy.png')
# test loss
save_data(array=test_losses, directory=path['array'],
file_name='mnist_classifier_crossentropyloss_test_loss.npy')
draw_line_graph(x=epochs, y=test_losses,
x_label='Epoch', y_label='Loss',
title='Mnist Classifier CrossEntropyLoss Test Loss',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_test_loss.png')
# test accuracy
save_data(array=test_accuracies, directory=path['array'],
file_name='mnist_classifier_crossentropyloss_test_accuracy.npy')
draw_line_graph(x=epochs, y=test_accuracies,
x_label='Epoch', y_label='Accuracy',
title='Mnist Classifier CrossEntropyLoss Test Accuracy',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_test_accuracy.png')
# loss
draw_multi_lines_graph(
lines=[
dict(label='Train', data=dict(x=epochs, y=train_losses)),
dict(label='Validation', data=dict(x=epochs, y=validation_losses)),
dict(label='Test', data=dict(x=epochs, y=test_losses))
],
x_label='Epoch', y_label='Loss',
title='Mnist Classifier CrossEntropyLoss Loss',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_loss.png')
# accuracy
draw_multi_lines_graph(
lines=[
dict(label='Train', data=dict(x=epochs, y=train_accuracies)),
dict(label='Validation', data=dict(x=epochs, y=validation_accuracies)),
dict(label='Test', data=dict(x=epochs, y=test_accuracies))
],
x_label='Epoch', y_label='Accuracy',
title='Mnist Classifier CrossEntropyLoss Accuracy',
directory=path['graph'],
file_name='mnist_classifier_crossentropyloss_accuracy.png')
# main
if __name__ == '__main__':
mnist_classifier_crossentropyloss()