-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
138 lines (123 loc) · 5.73 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import matplotlib.pyplot as graph
import numpy as np
import torch
def train(model, device, loader, optimizer, loss, one_hot_encoded=False, info_per_batch=10):
model.train()
number_of_batches = len(loader)
batch_losses = []
batch_accuracies = []
for batch_index, (batch_input, batch_target) in enumerate(loader):
batch_input, batch_target = batch_input.to(device), batch_target.to(device)
optimizer.zero_grad()
batch_output = model(batch_input)
if one_hot_encoded:
batch_target_one_hot_encoded = torch.nn.functional.one_hot(batch_target, 10).float()
loss_calculation = loss(batch_output, batch_target_one_hot_encoded)
else:
loss_calculation = loss(batch_output, batch_target)
loss_calculation.backward()
optimizer.step()
batch_loss = loss_calculation.item()
batch_losses.append(batch_loss)
batch_prediction = batch_output.max(dim=1, keepdim=True)[1]
batch_correct = batch_prediction.eq(batch_target.view_as(batch_prediction)).sum().item()
batch_size = len(batch_input)
batch_accuracy = batch_correct / batch_size
batch_accuracies.append(batch_accuracy)
if (batch_index + 1) % info_per_batch == 0:
info = 'Train: Batch {current_batch}/{number_of_batches}, Loss: {batch_loss:.5f}, Accuracy: % {batch_accuracy:.2f}'
print(info.format(current_batch=(batch_index + 1), number_of_batches=number_of_batches,
batch_loss=batch_loss, batch_accuracy=(100 * batch_accuracy)))
average_loss = sum(batch_losses) / number_of_batches
accuracy = sum(batch_accuracies) / number_of_batches
return average_loss, accuracy
def test(model, device, loader, loss, one_hot_encoded=False, info_name='Test', info_per_batch=10):
model.eval()
number_of_batches = len(loader)
batch_loses = []
batch_accuracies = []
with torch.no_grad():
for batch_index, (batch_input, batch_target) in enumerate(loader):
batch_input, batch_target = batch_input.to(device), batch_target.to(device)
batch_output = model(batch_input)
if one_hot_encoded:
batch_target_one_hot_encoded = torch.nn.functional.one_hot(batch_target, 10).float()
loss_calculation = loss(batch_output, batch_target_one_hot_encoded)
else:
loss_calculation = loss(batch_output, batch_target)
batch_loss = loss_calculation.item()
batch_loses.append(batch_loss)
batch_prediction = batch_output.max(dim=1, keepdim=True)[1]
batch_correct = batch_prediction.eq(batch_target.view_as(batch_prediction)).sum().item()
batch_size = len(batch_input)
batch_accuracy = batch_correct / batch_size
batch_accuracies.append(batch_accuracy)
if (batch_index + 1) % info_per_batch == 0:
info = '{info_name}: Batch {current_batch}/{number_of_batches}, Loss: {batch_loss:.5f}, Accuracy: % {batch_accuracy:.2f}'
print(info.format(current_batch=(batch_index + 1), number_of_batches=number_of_batches,
batch_loss=batch_loss, batch_accuracy=(100 * batch_accuracy), info_name=info_name))
average_loss = sum(batch_loses) / number_of_batches
accuracy = sum(batch_accuracies) / number_of_batches
return average_loss, accuracy
def save_state(model, directory, file_name):
file_path = os.path.join(directory, file_name)
state = model.state_dict()
torch.save(obj=state, f=file_path)
info = 'File: {file_name} is saved.'
print(info.format(file_name=file_name))
def save_data(array, directory, file_name):
file_path = os.path.join(directory, file_name)
np.save(file=file_path, arr=array)
info = 'File: {file_name} is saved.'
print(info.format(file_name=file_name))
def load_data(directory, file_name):
file_path = os.path.join(directory, file_name)
array = []
if os.path.exists(file_path):
array = np.load(file_path)
info = 'File: {file_name} is saved.'
print(info.format(file_name=file_name))
else:
info = 'File: {file_name} does not exist.'
print(info.format(file_name=file_name))
return array
def draw_multi_lines_graph(lines, x_label, y_label, title, directory=None, file_name=None):
graph.clf()
labels = []
for line in lines:
label = line['label']
labels.append(label)
x = line['data']['x']
y = line['data']['y']
graph.xticks(x)
graph.plot(x, y)
graph.xlabel(xlabel=x_label)
graph.ylabel(ylabel=y_label)
graph.title(label=title)
graph.legend(labels)
if directory is not None:
if file_name is None:
file_name = '_'.join([word.lower() for word in title.split()]) + '.png'
file_path = os.path.join(directory, file_name)
graph.savefig(file_path)
info = 'File: {file_name} is saved.'
print(info.format(file_name=file_name))
else:
graph.show()
def draw_line_graph(x, y, x_label, y_label, title, directory=None, file_name=None):
graph.clf()
graph.xticks(x)
graph.plot(x, y)
graph.xlabel(xlabel=x_label)
graph.ylabel(ylabel=y_label)
graph.title(label=title)
if directory is not None:
if file_name is None:
file_name = '_'.join([word.lower() for word in title.split()]) + '.png'
file_path = os.path.join(directory, file_name)
graph.savefig(file_path)
info = 'File: {file_name} is saved.'
print(info.format(file_name=file_name))
else:
graph.show()