-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanatomix_usage_example.py
68 lines (48 loc) · 1.45 KB
/
anatomix_usage_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python
# coding: utf-8
import itk
import anatomix
import matplotlib.pyplot as plt
import unigradicon
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.ndimage.filters import gaussian_filter
import numpy as np
import sys
from monai.inferers import sliding_window_inference
dataset = torch.load("/playpen-raid2/Data/AbdomenCT-1K/HastingsProcessed/results/stretched_traintensor/train_imgs_tensor.trch")
print(dataset[0])
sys.exit()
m_anatomix = anatomix.load_model()
def minmax(arr, minclip=None, maxclip=None):
if not (minclip is None) & (maxclip is None):
arr = np.clip(arr, minclip, maxclip)
arr = (arr - arr.min()) / (arr.max() - arr.min())
return arr
def extract_features(
img_fixed,
model,
fixminclip=None,
fixmaxclip=None,
movminclip=None,
movmaxclip=None,
):
imfixed = minmax(img_fixed, fixminclip, fixmaxclip)
imfixed = torch.from_numpy(imfixed)[None, None, ...].float().cuda()
imfixed.requires_grad = False
with torch.no_grad():
opfixed = sliding_window_inference(
imfixed,
(128, 128, 128),
2,
model,
overlap=0.8,
mode="gaussian",
sigma_scale=0.25,
)
return opfixed
sample_image_itk = itk.imread(paths[0])
sample_image = np.array(sample_image_itk)
individual_features = extract_features(sample_image, m_anatomix)