This is the official implementation of CU-Net: Real-Time High-Fidelity Color Upsampling for Point Clouds, Lingdong Wang, Mohammad Hajiesmaili, Jacob Chakareski, Ramesh K. Sitaraman. The paper is available at https://arxiv.org/abs/2209.06112 .
Install prerequisites using the following command. Note that we are using PyTorch 1.11.0 + CUDA 11.3. Please adjust the version according to your environment.
pip install -r requirements.txt
Download the MPEG 8i dataset from: https://mpeg-pcc.org/index.php/pcc-content-database/8i-voxelized-surface-light-field-8ivslf-dataset/
Apply for and download the FaceScape dataset from: https://facescape.nju.edu.cn/
Organize the dataset as follows. Data splitting files (train.txt, valid.txt, test.txt) can be found in data/FaceScape/.
FaceScape\
origin\
TU-Model\
1\
2\
...
train.txt
valid.txt
test.txt
Run the following command to generate a point cloud dataset from the orignal FaceScape dataset.
cd data/
python face_scape_preprocess.py --data_dir XXX/FaceScape/
Pretrained CU-Net models can be found in the pretrained/ folder.
Run the following command to test CU-Net and other baselines on the MPEG 8i dataset:
python mpeg8i.py --data_dir XXX/MPEG8i/
You can also test CU-Net on the FaceScape dataset by:
python test.py --data_dir XXX/FaceScape/
To evaluate baselines on the FaceScape dataset, use:
python baseline.py --data_dir XXX/FaceScape/
Use the following commands to reproduce the 2x, 5x, 10x upsampling tasks described in the paper.
python train.py --data_dir XXX/FaceScape/ --log_name face_vox_2x_b3c32 --block 3 --channel 32 --scale 2 --gt_scale 5 --batch_size 16
python train.py --data_dir XXX/FaceScape/ --log_name face_vox_5x_b4c64 --block 4 --channel 64 --scale 5 --gt_scale 2 --batch_size 8
python train.py --data_dir XXX/FaceScape/ --log_name face_vox_10x_b5c32 --block 5 --channel 32 --scale 10 --gt_scale 1 --batch_size 4
Use the following command to measure the latency of CU-Net and devoxelization.
python latency_vox.py
Use the following command to measure the latency of other baseline methods.
python latency_traditional.py