-
-
Notifications
You must be signed in to change notification settings - Fork 16.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Improve the performance of training without cache. #4017
Comments
👋 Hello @junjihashimoto, thank you for your interest in 🚀 YOLOv5! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution. If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you. If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available. For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com. RequirementsPython 3.8 or later with all requirements.txt dependencies installed, including $ pip install -r requirements.txt EnvironmentsYOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
StatusIf this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), testing (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. |
@junjihashimoto hi, thank you for your feature suggestion on how to improve YOLOv5 🚀! The fastest and easiest way to incorporate your ideas into the official codebase is to submit a Pull Request (PR) implementing your idea, and if applicable providing before and after profiling/inference/training results to help us understand the improvement your feature provides. This allows us to directly see the changes in the code and to understand how they affect workflows and performance. Please see our ✅ Contributing Guide to get started. |
I've implement the cache on disk. |
@junjihashimoto good news 😃! Your original issue may now be fixed ✅ in PR #4049. To receive this update:
Thank you for spotting this issue and informing us of the problem. Please let us know if this update resolves the issue for you, and feel free to inform us of any other issues you discover or feature requests that come to mind. Happy trainings with YOLOv5 🚀! |
🚀 Feature
When training is without cache, the usage rate of gpu will not increase.
opencv preprocessing is too slow.
It doesn't get faster even if I increase the number of workers of dataloader.
There are two improvements.
Motivation
When I try to cache about 80,000 images, 64GB of memory is not enough.
Pitch
Since it cannot be cached, it takes more than 1 hour per epoch with v100.
The text was updated successfully, but these errors were encountered: