-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathmain.cpp
296 lines (234 loc) · 8.23 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include <fstream>
#include <math.h>
#include <uWS/uWS.h>
#include <chrono>
#include <iostream>
#include <thread>
#include <vector>
#include "Eigen-3.3/Eigen/Core"
#include "Eigen-3.3/Eigen/QR"
#include "json.hpp"
using namespace std;
// for convenience
using json = nlohmann::json;
// For converting back and forth between radians and degrees.
constexpr double pi() { return M_PI; }
double deg2rad(double x) { return x * pi() / 180; }
double rad2deg(double x) { return x * 180 / pi(); }
// Checks if the SocketIO event has JSON data.
// If there is data the JSON object in string format will be returned,
// else the empty string "" will be returned.
string hasData(string s) {
auto found_null = s.find("null");
auto b1 = s.find_first_of("[");
auto b2 = s.find_first_of("}");
if (found_null != string::npos) {
return "";
} else if (b1 != string::npos && b2 != string::npos) {
return s.substr(b1, b2 - b1 + 2);
}
return "";
}
double distance(double x1, double y1, double x2, double y2)
{
return sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
}
int ClosestWaypoint(double x, double y, const vector<double> &maps_x, const vector<double> &maps_y)
{
double closestLen = 100000; //large number
int closestWaypoint = 0;
for(int i = 0; i < maps_x.size(); i++)
{
double map_x = maps_x[i];
double map_y = maps_y[i];
double dist = distance(x,y,map_x,map_y);
if(dist < closestLen)
{
closestLen = dist;
closestWaypoint = i;
}
}
return closestWaypoint;
}
int NextWaypoint(double x, double y, double theta, const vector<double> &maps_x, const vector<double> &maps_y)
{
int closestWaypoint = ClosestWaypoint(x,y,maps_x,maps_y);
double map_x = maps_x[closestWaypoint];
double map_y = maps_y[closestWaypoint];
double heading = atan2((map_y-y),(map_x-x));
double angle = fabs(theta-heading);
angle = min(2*pi() - angle, angle);
if(angle > pi()/4)
{
closestWaypoint++;
if (closestWaypoint == maps_x.size())
{
closestWaypoint = 0;
}
}
return closestWaypoint;
}
// Transform from Cartesian x,y coordinates to Frenet s,d coordinates
vector<double> getFrenet(double x, double y, double theta, const vector<double> &maps_x, const vector<double> &maps_y)
{
int next_wp = NextWaypoint(x,y, theta, maps_x,maps_y);
int prev_wp;
prev_wp = next_wp-1;
if(next_wp == 0)
{
prev_wp = maps_x.size()-1;
}
double n_x = maps_x[next_wp]-maps_x[prev_wp];
double n_y = maps_y[next_wp]-maps_y[prev_wp];
double x_x = x - maps_x[prev_wp];
double x_y = y - maps_y[prev_wp];
// find the projection of x onto n
double proj_norm = (x_x*n_x+x_y*n_y)/(n_x*n_x+n_y*n_y);
double proj_x = proj_norm*n_x;
double proj_y = proj_norm*n_y;
double frenet_d = distance(x_x,x_y,proj_x,proj_y);
//see if d value is positive or negative by comparing it to a center point
double center_x = 1000-maps_x[prev_wp];
double center_y = 2000-maps_y[prev_wp];
double centerToPos = distance(center_x,center_y,x_x,x_y);
double centerToRef = distance(center_x,center_y,proj_x,proj_y);
if(centerToPos <= centerToRef)
{
frenet_d *= -1;
}
// calculate s value
double frenet_s = 0;
for(int i = 0; i < prev_wp; i++)
{
frenet_s += distance(maps_x[i],maps_y[i],maps_x[i+1],maps_y[i+1]);
}
frenet_s += distance(0,0,proj_x,proj_y);
return {frenet_s,frenet_d};
}
// Transform from Frenet s,d coordinates to Cartesian x,y
vector<double> getXY(double s, double d, const vector<double> &maps_s, const vector<double> &maps_x, const vector<double> &maps_y)
{
int prev_wp = -1;
while(s > maps_s[prev_wp+1] && (prev_wp < (int)(maps_s.size()-1) ))
{
prev_wp++;
}
int wp2 = (prev_wp+1)%maps_x.size();
double heading = atan2((maps_y[wp2]-maps_y[prev_wp]),(maps_x[wp2]-maps_x[prev_wp]));
// the x,y,s along the segment
double seg_s = (s-maps_s[prev_wp]);
double seg_x = maps_x[prev_wp]+seg_s*cos(heading);
double seg_y = maps_y[prev_wp]+seg_s*sin(heading);
double perp_heading = heading-pi()/2;
double x = seg_x + d*cos(perp_heading);
double y = seg_y + d*sin(perp_heading);
return {x,y};
}
int main() {
uWS::Hub h;
// Load up map values for waypoint's x,y,s and d normalized normal vectors
vector<double> map_waypoints_x;
vector<double> map_waypoints_y;
vector<double> map_waypoints_s;
vector<double> map_waypoints_dx;
vector<double> map_waypoints_dy;
// Waypoint map to read from
string map_file_ = "../data/highway_map.csv";
// The max s value before wrapping around the track back to 0
double max_s = 6945.554;
ifstream in_map_(map_file_.c_str(), ifstream::in);
string line;
while (getline(in_map_, line)) {
istringstream iss(line);
double x;
double y;
float s;
float d_x;
float d_y;
iss >> x;
iss >> y;
iss >> s;
iss >> d_x;
iss >> d_y;
map_waypoints_x.push_back(x);
map_waypoints_y.push_back(y);
map_waypoints_s.push_back(s);
map_waypoints_dx.push_back(d_x);
map_waypoints_dy.push_back(d_y);
}
h.onMessage([&map_waypoints_x,&map_waypoints_y,&map_waypoints_s,&map_waypoints_dx,&map_waypoints_dy](uWS::WebSocket<uWS::SERVER> ws, char *data, size_t length,
uWS::OpCode opCode) {
// "42" at the start of the message means there's a websocket message event.
// The 4 signifies a websocket message
// The 2 signifies a websocket event
//auto sdata = string(data).substr(0, length);
//cout << sdata << endl;
if (length && length > 2 && data[0] == '4' && data[1] == '2') {
auto s = hasData(data);
if (s != "") {
auto j = json::parse(s);
string event = j[0].get<string>();
if (event == "telemetry") {
// j[1] is the data JSON object
// Main car's localization Data
double car_x = j[1]["x"];
double car_y = j[1]["y"];
double car_s = j[1]["s"];
double car_d = j[1]["d"];
double car_yaw = j[1]["yaw"];
double car_speed = j[1]["speed"];
// Previous path data given to the Planner
auto previous_path_x = j[1]["previous_path_x"];
auto previous_path_y = j[1]["previous_path_y"];
// Previous path's end s and d values
double end_path_s = j[1]["end_path_s"];
double end_path_d = j[1]["end_path_d"];
// Sensor Fusion Data, a list of all other cars on the same side of the road.
auto sensor_fusion = j[1]["sensor_fusion"];
json msgJson;
vector<double> next_x_vals;
vector<double> next_y_vals;
// TODO: define a path made up of (x,y) points that the car will visit sequentially every .02 seconds
msgJson["next_x"] = next_x_vals;
msgJson["next_y"] = next_y_vals;
auto msg = "42[\"control\","+ msgJson.dump()+"]";
//this_thread::sleep_for(chrono::milliseconds(1000));
ws.send(msg.data(), msg.length(), uWS::OpCode::TEXT);
}
} else {
// Manual driving
std::string msg = "42[\"manual\",{}]";
ws.send(msg.data(), msg.length(), uWS::OpCode::TEXT);
}
}
});
// We don't need this since we're not using HTTP but if it's removed the
// program
// doesn't compile :-(
h.onHttpRequest([](uWS::HttpResponse *res, uWS::HttpRequest req, char *data,
size_t, size_t) {
const std::string s = "<h1>Hello world!</h1>";
if (req.getUrl().valueLength == 1) {
res->end(s.data(), s.length());
} else {
// i guess this should be done more gracefully?
res->end(nullptr, 0);
}
});
h.onConnection([&h](uWS::WebSocket<uWS::SERVER> ws, uWS::HttpRequest req) {
std::cout << "Connected!!!" << std::endl;
});
h.onDisconnection([&h](uWS::WebSocket<uWS::SERVER> ws, int code,
char *message, size_t length) {
ws.close();
std::cout << "Disconnected" << std::endl;
});
int port = 4567;
if (h.listen(port)) {
std::cout << "Listening to port " << port << std::endl;
} else {
std::cerr << "Failed to listen to port" << std::endl;
return -1;
}
h.run();
}