-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathrangeset.py
305 lines (246 loc) · 8.86 KB
/
rangeset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
"""
This module provides a RangeSet data structure. A range set is, as the
name implies, a set of ranges. Intuitively, you could think about a
range set as a subset of the real number line, with arbitrary gaps.
Some examples of range sets on the real number line:
1. -infinity to +infinity
2. -1 to 1
3. 1 to 4, 10 to 20
4. -infinity to 0, 10 to 20
5. (the empty set)
The code lives on github at: https://github.com/axiak/py-rangeset.
Overview
-------------
.. toctree::
:maxdepth: 2
The rangeset implementation offers immutable objects that represent the range
sets as described above. The operations are largely similar to the
`set object <http://docs.python.org/library/stdtypes.html#set>`_ with the
obvious exception that mutating methods such as ``.add`` and ``.remove``
are not available. The main object is the ``RangeSet`` object.
"""
import bisect
import operator
import functools
import collections
__version__ = (0, 0, 6)
__all__ = ('INFINITY', 'NEGATIVE_INFINITY',
'RangeSet')
_parent = collections.namedtuple('RangeSet_', ['ends'])
class _Indeterminate(object):
def timetuple(self):
return ()
def __eq__(self, other):
return other is self
class _Infinity(_Indeterminate):
def __lt__(self, other):
return False
def __gt__(self, other):
return True
def __str__(self):
return 'inf'
__repr__ = __str__
class _NegativeInfinity(_Indeterminate):
def __lt__(self, other):
return True
def __gt__(self, other):
return False
def __str__(self):
return '-inf'
__repr__ = __str__
INFINITY = _Infinity()
NEGATIVE_INFINITY = _NegativeInfinity()
class RangeSet(_parent):
def __new__(cls, start, end):
if end is _RAW_ENDS:
ends = start
else:
if isinstance(start, _Indeterminate) and isinstance(end, _Indeterminate) and \
start == end:
raise LogicError("A range cannot consist of a single end the line.")
if start > end:
start, end = end, start
ends = ((start, _START), (end, _END))
return _parent.__new__(cls, ends)
def __merged_ends(self, *others):
sorted_ends = list(self.ends)
for other in others:
sorted_ends.extend(RangeSet.__coerce(other).ends)
sorted_ends.sort()
return sorted_ends
@classmethod
def __coerce(cls, value):
if isinstance(value, RangeSet):
return value
elif isinstance(value, tuple) and len(value) == 2:
return cls(value[0], value[1])
else:
return cls.mutual_union(*[(x, x) for x in value])
@classmethod
def __iterate_state(cls, ends):
state = 0
for _, end in ends:
if end == _START:
state += 1
else:
state -= 1
yield _, end, state
def __or__(self, *other):
sorted_ends = self.__merged_ends(*other)
new_ends = []
for _, end, state in RangeSet.__iterate_state(sorted_ends):
if state > 1 and end == _START:
continue
elif state > 0 and end == _END:
continue
new_ends.append((_, end))
return RangeSet(tuple(new_ends), _RAW_ENDS)
union = __or__
def __and__(self, *other, **kwargs):
min_overlap = kwargs.pop('minimum', 2)
if kwargs:
raise ValueError("kwargs is not empty: {0}".format(kwargs))
sorted_ends = self.__merged_ends(*other)
new_ends = []
for _, end, state in RangeSet.__iterate_state(sorted_ends):
if state == min_overlap and end == _START:
new_ends.append((_, end))
elif state == (min_overlap - 1) and end == _END:
new_ends.append((_, end))
return RangeSet(tuple(new_ends), _RAW_ENDS)
intersect = __and__
def __ror__(self, other):
return self.__or__(other)
def __rand__(self, other):
return self.__and__(other)
def __rxor__(self, other):
return self.__xor__(other)
def __xor__(self, *other):
sorted_ends = self.__merged_ends(*other)
new_ends = []
old_val = None
for _, end, state in RangeSet.__iterate_state(sorted_ends):
if state == 2 and end == _START:
new_ends.append((_, _NEGATE[end]))
elif state == 1 and end == _END:
new_ends.append((_, _NEGATE[end]))
elif state == 1 and end == _START:
new_ends.append((_, end))
elif state == 0 and end == _END:
new_ends.append((_, end))
return RangeSet(tuple(new_ends), _RAW_ENDS)
symmetric_difference = __xor__
def __contains__(self, test):
last_val, last_end = None, None
if not self.ends:
return False
if isinstance(test, _Indeterminate):
return False
for _, end, state in RangeSet.__iterate_state(self.ends):
if _ == test:
return True
elif last_val is not None and _ > test:
return last_end == _START
elif _ > test:
return False
last_val, last_end = _, end
return self.ends[-1][0] == test
def issuperset(self, test):
if isinstance(test, RangeSet):
rangeset = test
else:
rangeset = RangeSet.__coerce(test)
difference = rangeset - ~self
return difference == rangeset
__ge__ = issuperset
def __gt__(self, other):
return self != other and self >= other
def issubset(self, other):
return RangeSet.__coerce(other).issuperset(self)
__le__ = issubset
def __lt__(self, other):
return self != other and self <= other
def isdisjoint(self, other):
return not bool(self & other)
def __nonzero__(self):
return bool(self.ends)
def __invert__(self):
if not self.ends:
new_ends = ((NEGATIVE_INFINITY, _START),
(INFINITY, _END))
return RangeSet(new_ends, _RAW_ENDS)
new_ends = list(self.ends)
head, tail = [], []
if new_ends[0][0] == NEGATIVE_INFINITY:
new_ends.pop(0)
else:
head = [(NEGATIVE_INFINITY, _START)]
if new_ends[-1][0] == INFINITY:
new_ends.pop(-1)
else:
tail = [(INFINITY, _END)]
for i, value in enumerate(new_ends):
new_ends[i] = (value[0], _NEGATE[value[1]])
return RangeSet(tuple(head + new_ends + tail), _RAW_ENDS)
invert = __invert__
def __sub__(self, other):
return self & ~RangeSet.__coerce(other)
def difference(self, other):
return self.__sub__(other)
def __rsub__(self, other):
return RangeSet.__coerce(other) - self
def measure(self):
if not self.ends:
return 0
if isinstance(self.ends[0][0], _Indeterminate) or isinstance(self.ends[-1][0], _Indeterminate):
raise ValueError("Cannot compute range with unlimited bounds.")
return reduce(operator.add, (self.ends[i + 1][0] - self.ends[i][0] for i in range(0, len(self.ends), 2)))
def range(self):
if not self.ends:
return 0
if isinstance(self.ends[0][0], _Indeterminate) or isinstance(self.ends[-1][0], _Indeterminate):
raise ValueError("Cannot compute range with unlimited bounds.")
return self.ends[-1][0] - self.ends[0][0]
def __str__(self):
pieces = ["{0} -- {1}".format(self.ends[i][0], self.ends[i + 1][0])
for i in range(0, len(self.ends), 2)]
return "<RangeSet {0}>".format(", ".join(pieces))
__repr__ = __str__
def __eq__(self, other):
if self is other:
return True
elif not isinstance(other, RangeSet):
try:
other = RangeSet.__coerce(other)
except TypeError:
return False
return self.ends == other.ends
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.ends)
@classmethod
def mutual_overlaps(cls, *ranges, **kwargs):
minimum = kwargs.pop('minimum', 2)
if kwargs:
raise ValueError("kwargs is not empty: {0}".format(kwargs))
return cls.__coerce(ranges[0]).intersect(*ranges[1:], minimum=minimum)
@classmethod
def mutual_union(cls, *ranges):
return cls.__coerce(ranges[0]).union(*ranges[1:])
@property
def min(self):
return self.ends[0][0]
@property
def max(self):
return self.ends[-1][0]
def __iter__(self):
ends_copy = list(self.ends)
for i in range(0, len(ends_copy), 2):
yield (ends_copy[i][0], ends_copy[i + 1][0])
_START = -1
_END = 1
_NEGATE = {_START: _END, _END: _START}
_RAW_ENDS = object()
class LogicError(ValueError):
pass