forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stride.hpp
477 lines (420 loc) · 16.5 KB
/
stride.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/int_tuple.hpp>
#include <cute/numeric/int.hpp>
#include <cute/numeric/math.hpp>
namespace cute
{
/** crd2idx(c,s,d) maps a coordinate within <Shape,Stride> to an index
*
* This is computed as follows:
* [coord, shape, and stride are all integers => step forward by stride]
* op(c, s, d) => c * d
* [coord is integer, shape and stride are tuple => divmod coord for each mode]
* op(c, (s,S), (d,D)) => op(c % prod(s), s, d) + op(c / prod(s), (S), (D))
* [coord, shape, and stride are all tuples => consider each mode independently]
* op((c,C), (s,S), (d,D)) => op(c, s, d) + op((C), (S), (D))
*/
template <class Coord, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
crd2idx(Coord const& coord,
Shape const& shape,
Stride const& stride);
namespace detail {
template <class Coord, class Shape, class Stride, int... Is>
CUTE_HOST_DEVICE constexpr
auto
crd2idx_ttt(Coord const& coord,
Shape const& shape,
Stride const& stride, seq<Is...>)
{
return (... + crd2idx(get<Is>(coord), get<Is>(shape), get<Is>(stride)));
}
template <class CInt, class STuple, class DTuple, int I0, int... Is>
CUTE_HOST_DEVICE constexpr
auto
crd2idx_itt(CInt const& coord,
STuple const& shape,
DTuple const& stride, seq<I0,Is...>)
{
if constexpr (sizeof...(Is) == 0) { // Avoid recursion and mod on single/last iter
return crd2idx(coord, get<I0>(shape), get<I0>(stride));
} else if constexpr (is_constant<0, CInt>::value) {
return crd2idx(_0{}, get<I0>(shape), get<I0>(stride))
+ (_0{} + ... + crd2idx(_0{}, get<Is>(shape), get<Is>(stride)));
} else { // General case
auto [div, mod] = divmod(coord, product(get<I0>(shape)));
return crd2idx(mod, get<I0>(shape), get<I0>(stride))
+ crd2idx_itt(div, shape, stride, seq<Is...>{});
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
template <class Coord, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
crd2idx(Coord const& coord,
Shape const& shape,
Stride const& stride)
{
if constexpr (is_tuple<Coord>::value) {
if constexpr (is_tuple<Shape>::value) { // tuple tuple tuple
static_assert(tuple_size<Coord>::value == tuple_size< Shape>::value, "Mismatched Ranks");
static_assert(tuple_size<Coord>::value == tuple_size<Stride>::value, "Mismatched Ranks");
return detail::crd2idx_ttt(coord, shape, stride, tuple_seq<Coord>{});
} else { // tuple "int" "int"
static_assert(sizeof(Coord) == 0, "Invalid parameters");
}
} else {
if constexpr (is_tuple<Shape>::value) { // "int" tuple tuple
static_assert(tuple_size<Shape>::value == tuple_size<Stride>::value, "Mismatched Ranks");
return detail::crd2idx_itt(coord, shape, stride, tuple_seq<Shape>{});
} else { // "int" "int" "int"
return coord * stride;
}
}
CUTE_GCC_UNREACHABLE;
}
namespace detail {
template <class CTuple, class STuple, int I0, int... Is>
CUTE_HOST_DEVICE constexpr
auto
crd2idx_horner(CTuple const& coord,
STuple const& shape, seq<I0,Is...>)
{
if constexpr (sizeof...(Is) == 0) { // No recursion on single/last iter
return get<I0>(coord);
} else { // General case
return get<I0>(coord) + get<I0>(shape) * crd2idx_horner(coord, shape, seq<Is...>{});
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
/** crd2idx(c,s) maps a coordinate within Shape to an index
* via a colexicographical enumeration of coordinates in Shape.
* i = c0 + s0 * (c1 + s1 * (c2 + s2 * ...))
*/
template <class Coord, class Shape>
CUTE_HOST_DEVICE constexpr
auto
crd2idx(Coord const& coord,
Shape const& shape)
{
if constexpr (is_integral<Coord>::value) { // Coord is already an index
return coord;
} else if constexpr (is_integral<Shape>::value) {
static_assert(dependent_false<Shape>, "Invalid parameters");
} else { // Make congruent, flatten, and apply Horner's method
static_assert(tuple_size<Coord>::value == tuple_size<Shape>::value, "Mismatched Ranks");
auto flat_coord = flatten(coord);
auto flat_shape = flatten(product_like(shape, coord));
return detail::crd2idx_horner(flat_coord, flat_shape, tuple_seq<decltype(flat_shape)>{});
}
CUTE_GCC_UNREACHABLE;
}
/** idx2crd(i,s,d) splits an index into a coordinate within <Shape,Stride>.
*
* This is computed as follows:
* [index, shape, and stride are all integers => determine 1D coord]
* op(i, s, d) => (i / d) % s
* [index is integer, shape and stride are tuple => determine component for each mode]
* op(i, (s,S), (d,D)) => (op(i, s, d), op(i, S, D)...)
* [index, shape, and stride are all tuples => consider each mode independently]
* op((i,I), (s,S), (d,D)) => (op(i, s, d), op((I), (S), (D)))
*
* NOTE: This only works for compact shape+stride layouts. A more general version would
* apply to all surjective layouts
*/
template <class Index, class Shape, class Stride>
CUTE_HOST_DEVICE constexpr
auto
idx2crd(Index const& idx,
Shape const& shape,
Stride const& stride)
{
if constexpr (is_tuple<Index>::value) {
if constexpr (is_tuple<Shape>::value) { // tuple tuple tuple
static_assert(tuple_size<Index>::value == tuple_size< Shape>::value, "Mismatched Ranks");
static_assert(tuple_size<Index>::value == tuple_size<Stride>::value, "Mismatched Ranks");
return transform(idx, shape, stride, [](auto const& i, auto const& s, auto const& d){ return idx2crd(i,s,d); });
} else { // tuple "int" "int"
static_assert(sizeof(Index) == 0, "Invalid parameters");
}
} else {
if constexpr (is_tuple<Shape>::value) {
if constexpr (is_tuple<Stride>::value) { // "int" tuple tuple
static_assert(tuple_size<Shape>::value == tuple_size<Stride>::value, "Mismatched Ranks");
return transform(shape, stride, [&](auto const& s, auto const& d){ return idx2crd(idx,s,d); });
} else { // "int" tuple "int"
return transform(shape, compact_col_major(shape, stride), [&](auto const& s, auto const& d){ return idx2crd(idx,s,d); });
}
} else { // "int" "int" "int"
if constexpr (is_constant<1, Shape>::value) {
// Skip potential stride-0 division
return Int<0>{};
} else {
return (idx / stride) % shape;
}
}
}
CUTE_GCC_UNREACHABLE;
}
/** idx2crd(i,s) splits an index into a coordinate within Shape
* via a colexicographical enumeration of coordinates in Shape.
* c0 = (idx / 1) % s0
* c1 = (idx / s0) % s1
* c2 = (idx / (s0 * s1)) % s2
* ...
*/
template <class Index, class Shape>
CUTE_HOST_DEVICE constexpr
auto
idx2crd(Index const& idx,
Shape const& shape)
{
if constexpr (is_tuple<Index>::value) {
if constexpr (is_tuple<Shape>::value) { // tuple tuple
static_assert(tuple_size<Index>::value == tuple_size<Shape>::value, "Mismatched Ranks");
return transform(idx, shape, [](auto const& i, auto const& s) { return idx2crd(i,s); });
} else { // tuple "int"
static_assert(sizeof(Index) == 0, "Invalid parameters");
}
} else {
if constexpr (is_tuple<Shape>::value) { // "int" tuple
return transform_leaf(as_arithmetic_tuple(crd2idx(idx, shape, make_basis_like(shape))), identity{});
} else { // "int" "int"
return idx;
}
}
CUTE_GCC_UNREACHABLE;
}
//
// crd2crd
//
template <class Coord, class SShape, class DShape>
CUTE_HOST_DEVICE constexpr
auto
crd2crd(Coord const& coord,
SShape const& src_shape,
DShape const& dst_shape)
{
if constexpr (is_tuple<Coord>::value && is_tuple<SShape>::value && is_tuple<DShape>::value) {
static_assert(tuple_size<Coord>::value == tuple_size<SShape>::value, "Mismatched Ranks");
static_assert(tuple_size<Coord>::value == tuple_size<DShape>::value, "Mismatched Ranks");
return transform(coord, src_shape, dst_shape, [](auto const& c, auto const& s, auto const& d) { return crd2crd(c,s,d); });
} else {
// assert(size(src_shape) == size(dst_shape))
return idx2crd(crd2idx(coord, src_shape), dst_shape);
}
CUTE_GCC_UNREACHABLE;
}
//
// Compact Major
//
// Tags for common layouts and dispatching
struct LayoutLeft; // Col-major layout mapping; leftmost extent has stride 1
using GenColMajor = LayoutLeft; // Alias
struct LayoutRight; // Row-major layout mapping; rightmost extent has stride 1
using GenRowMajor = LayoutRight; // Alias
namespace detail {
// For GCC8.5 -- Use of lambdas in unevaluated contexts. Instead use function objects.
template <class Major>
struct CompactLambda;
// @pre is_integral<Current>
// Return (result, current * product(shape)) to enable recurrence
template <class Major, class Shape, class Current>
CUTE_HOST_DEVICE constexpr
auto
compact(Shape const& shape,
Current const& current)
{
if constexpr (is_tuple<Shape>::value) { // Shape::tuple Current::int
using Lambda = CompactLambda<Major>; // Append or Prepend
using Seq = typename Lambda::template seq<Shape>; // Seq or RSeq
return cute::detail::fold(shape, cute::make_tuple(cute::make_tuple(), current), Lambda{}, Seq{});
} else { // Shape::int Current::int
if constexpr (is_constant<1, Shape>::value) {
return cute::make_tuple(Int<0>{}, current); // If current is dynamic, this could save a reg
} else {
return cute::make_tuple(current, current * shape);
}
}
CUTE_GCC_UNREACHABLE;
}
// For GCC8.5 -- Specialization LayoutLeft
template <>
struct CompactLambda<LayoutLeft>
{
template <class Init, class Shape>
CUTE_HOST_DEVICE constexpr auto
operator()(Init const& init, Shape const& si) {
auto result = detail::compact<LayoutLeft>(si, get<1>(init));
return cute::make_tuple(append(get<0>(init), get<0>(result)), get<1>(result)); // Append
}
template <class Shape>
using seq = tuple_seq<Shape>; // Seq
};
// For GCC8.5 -- Specialization LayoutRight
template <>
struct CompactLambda<LayoutRight>
{
template <class Init, class Shape>
CUTE_HOST_DEVICE constexpr auto
operator()(Init const& init, Shape const& si) {
auto result = detail::compact<LayoutRight>(si, get<1>(init));
return cute::make_tuple(prepend(get<0>(init), get<0>(result)), get<1>(result)); // Prepend
}
template <class Shape>
using seq = tuple_rseq<Shape>; // RSeq
};
} // end namespace detail
template <class Major, class Shape, class Current = Int<1>,
__CUTE_REQUIRES(is_tuple<Shape>::value || is_integral<Shape>::value)>
CUTE_HOST_DEVICE constexpr
auto
compact_major(Shape const& shape,
Current const& current = {})
{
if constexpr (is_tuple<Current>::value) { // Shape::tuple Current::tuple
static_assert(is_tuple<Shape>::value, "Invalid parameters");
static_assert(tuple_size<Shape>::value == tuple_size<Current>::value, "Mismatched Ranks");
// Recurse to apply to the terminals of current
return transform(shape, current, [&](auto const& s, auto const& c){ return compact_major<Major>(s,c); });
} else {
return get<0>(detail::compact<Major>(shape, current));
}
CUTE_GCC_UNREACHABLE;
}
//
// Compact Col Major
//
struct LayoutLeft {
template <class Shape>
using Apply = decltype(compact_major<LayoutLeft>(declval<Shape>()));
};
template <class Shape, class Current = Int<1>>
CUTE_HOST_DEVICE constexpr
auto
compact_col_major(Shape const& shape,
Current const& current = {})
{
return compact_major<LayoutLeft>(shape, current);
}
//
// Compact Row Major
//
struct LayoutRight {
template <class Shape>
using Apply = decltype(compact_major<LayoutRight>(declval<Shape>()));
};
template <class Shape, class Current = Int<1>>
CUTE_HOST_DEVICE constexpr
auto
compact_row_major(Shape const& shape,
Current const& current = {})
{
return compact_major<LayoutRight>(shape, current);
}
//
// Compact Order -- compute a compact stride based on an ordering of the modes
//
namespace detail {
// @pre weakly_congruent(order, shape)
// @pre is_congruent<RefShape, RefOrder>
// @pre is_static<Order>
// @pre is_static<RefOrder>
template <class Shape, class Order, class RefShape, class RefOrder>
CUTE_HOST_DEVICE constexpr
auto
compact_order(Shape const& shape, Order const& order,
RefShape const& ref_shape, RefOrder const& ref_order)
{
if constexpr (is_tuple<Order>::value) {
static_assert(tuple_size<Shape>::value == tuple_size<Order>::value, "Need equal rank of shape and order");
return transform(shape, order, [&](auto const& s, auto const& o) { return compact_order(s, o, ref_shape, ref_order); });
} else {
// Compute the starting stride for this shape by accumulating all shapes corresponding to lesser orders
auto stride_start = product(transform(ref_shape, ref_order,
[&](auto const& s, auto const& o) {
return conditional_return(o < order, s, Int<1>{});
}));
return compact_col_major(shape, stride_start);
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
template <class Shape, class Order>
CUTE_HOST_DEVICE constexpr
auto
compact_order(Shape const& shape, Order const& order)
{
auto ref_shape = flatten_to_tuple(product_like(shape, order));
auto flat_order = flatten_to_tuple(order);
// Find the largest static element of order
auto max_order = cute::fold(flat_order, Int<0>{}, [](auto v, auto order) {
if constexpr (is_constant<true, decltype(v < order)>::value) {
return order;
} else {
return v;
}
CUTE_GCC_UNREACHABLE;
});
// Replace any dynamic elements within order with large-static elements
auto max_seq = make_range<max_order+1, max_order+1+rank(flat_order)>{};
auto ref_order = cute::transform(max_seq, flat_order, [](auto seq_v, auto order) {
if constexpr (is_static<decltype(order)>::value) {
return order;
} else {
return seq_v;
}
CUTE_GCC_UNREACHABLE;
});
auto new_order = unflatten(ref_order, order);
return detail::compact_order(shape, new_order, ref_shape, ref_order);
}
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
compact_order(Shape const& shape, GenColMajor const& major)
{
return compact_major<LayoutLeft>(shape);
}
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
compact_order(Shape const& shape, GenRowMajor const& major)
{
return compact_major<LayoutRight>(shape);
}
} // end namespace cute