forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
default_fmha_grouped.h
299 lines (255 loc) · 10.6 KB
/
default_fmha_grouped.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level GEMM definitions combine threadblock-scoped matrix multiply-add with
the appropriate threadblock-scoped epilogue.
Note, CUTLASS epilogues universally target row-major outputs. Column-major outputs are
accommodated by exchanging A and B operands and assuming transposed layouts. Partial
specializations here choose 'device::GemmTransposed' to implement this functionality.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/complex.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/numeric_types.h"
#include "fmha_grouped.h"
#include "gemm_kernel_utils.h"
#include "gemm/custom_mma.h"
#include "gemm/find_default_mma.h"
#include "gemm/mma_from_smem.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
// The datatype of Q/K/V
typename scalar_t_,
// Architecture we are targeting (eg `cutlass::arch::Sm80`)
typename ArchTag_,
// If Q/K/V are correctly aligned in memory and we can run a fast kernel
bool isAligned_,
int kQueriesPerBlock,
int kKeysPerBlock,
int kMaxK = (int)cutlass::platform::numeric_limits<uint32_t>::max(),
GroupScheduleMode GroupScheduleMode_ = GroupScheduleMode::kDeviceOnly
>
struct DefaultFMHAGrouped {
using scalar_t = scalar_t_;
using accum_t = float;
using output_t = scalar_t;
// Accumulator between 2 iterations
// Using `accum_t` improves perf on f16 at the cost of
// numerical errors
using output_accum_t = accum_t;
using ArchTag = ArchTag_;
static bool const kIsAligned = isAligned_;
static bool const kSingleValueIteration = kMaxK <= kKeysPerBlock;
static constexpr bool kIsHalf = cutlass::sizeof_bits<scalar_t>::value == 16;
static int const kWarpSize = 32;
static int const kNumWarpsPerBlock = kQueriesPerBlock * kKeysPerBlock / (kWarpSize * kWarpSize);
struct MM0 {
/*
In this first matmul, we compute a block of `Q @ K.T`.
While the calculation result is still hot in registers, we update
`mi`, `m_prime`, `s_prime` in shared-memory, and then store this value
into a shared-memory ("AccumulatorSharedStorage") that is used later as
operand A for the second matmul (see MM1)
*/
using GemmType = gemm_kernel_utils::DefaultGemmType<ArchTag, scalar_t>;
using OpClass = typename GemmType::OpClass;
using ElementA = scalar_t;
using ElementB = scalar_t;
using ElementC = scalar_t;
using ElementAccumulator = accum_t;
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = cutlass::layout::RowMajor;
using DefaultConfig =
typename cutlass::gemm::device::DefaultGemmConfiguration<
OpClass,
ArchTag,
ElementA,
ElementB,
ElementC,
ElementAccumulator
>;
static int const kAlignmentA =
kIsAligned ? DefaultConfig::kAlignmentA : GemmType::kMinimumAlignment;
static int const kAlignmentB =
kIsAligned ? DefaultConfig::kAlignmentB : GemmType::kMinimumAlignment;
using ThreadblockShape = cutlass::gemm::GemmShape<kQueriesPerBlock, kKeysPerBlock, GemmType::ThreadK>;
using WarpShape = cutlass::gemm::GemmShape<32, 32, GemmType::WarpK>;
using InstructionShape = typename GemmType::InstructionShape;
static int const kStages = DefaultConfig::kStages;
using Operator = typename GemmType::Operator;
using DefaultMma = typename cutlass::gemm::threadblock::FindDefaultMma<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementAccumulator,
LayoutC,
OpClass,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
ArchTag::kMinComputeCapability >= 80 && kIsHalf
? 4
: DefaultConfig::kStages,
Operator
>::DefaultMma;
using MmaCore = typename DefaultMma::MmaCore;
using IteratorA = typename DefaultMma::IteratorA;
using IteratorB = typename DefaultMma::IteratorB;
using DefaultThreadblockMma = typename DefaultMma::ThreadblockMma;
using Mma = typename cutlass::platform::conditional<
kSingleValueIteration,
typename MakeCustomMma<DefaultThreadblockMma, kMaxK>::Mma,
DefaultThreadblockMma>::type;
using AccumLambdaIterator = typename DefaultMmaAccumLambdaIterator<
typename Mma::Operator::IteratorC,
ElementAccumulator,
kWarpSize>::Iterator;
static_assert(MmaCore::WarpCount::kCount == kNumWarpsPerBlock, "");
// Epilogue to store to shared-memory in a format that we can use later for
// the second matmul
using B2bGemm = typename cutlass::gemm::threadblock::B2bGemm<
typename Mma::Operator::IteratorC,
typename Mma::Operator,
scalar_t,
WarpShape,
ThreadblockShape>;
using AccumulatorSharedStorage = typename B2bGemm::AccumulatorSharedStorage;
};
struct MM1 {
/*
Second matmul: perform `attn @ V` where `attn` is the attention (not
normalized) and stored in shared memory
*/
using GemmType = typename MM0::GemmType;
using OpClass = typename GemmType::OpClass;
using ElementA = scalar_t;
using ElementB = scalar_t;
using ElementC = output_accum_t;
using ElementAccumulator = accum_t;
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using DefaultConfig =
typename cutlass::gemm::device::DefaultGemmConfiguration<
OpClass,
ArchTag,
ElementA,
ElementB,
ElementC,
ElementAccumulator
>;
static int const kAlignmentA = DefaultConfig::kAlignmentA;
static int const kAlignmentB =
kIsAligned ? DefaultConfig::kAlignmentB : GemmType::kMinimumAlignment;
using ThreadblockShape = typename MM0::ThreadblockShape;
using WarpShape = typename MM0::WarpShape;
using InstructionShape = typename MM0::InstructionShape;
using EpilogueOutputOp = typename DefaultConfig::EpilogueOutputOp;
static int const kStages = DefaultConfig::kStages;
using Operator = typename GemmType::Operator;
using ThreadblockSwizzle = void; // Swizzling is unused
static bool const kSplitKSerial = false;
using DefaultGemm = cutlass::gemm::kernel::DefaultGemm<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementC,
LayoutC,
ElementAccumulator,
OpClass,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
ArchTag::kMinComputeCapability >= 80 && kIsHalf
? 4
: DefaultConfig::kStages,
kSplitKSerial,
Operator>;
using WarpIteratorA = typename cutlass::gemm::threadblock::
DefaultWarpIteratorAFromSharedMemory<
typename DefaultGemm::Mma::Policy::Operator::Shape, // WarpShape
typename DefaultGemm::Mma::Policy::Operator::InstructionShape,
typename DefaultGemm::Mma::Policy::Operator::IteratorA,
typename DefaultGemm::Mma::Policy>::WarpIterator;
using DefaultMmaFromSmem =
typename cutlass::gemm::threadblock::DefaultMmaFromSharedMemory<
typename DefaultGemm::Mma,
MM0::AccumulatorSharedStorage::Shape::kN, // kMaxK
WarpIteratorA,
false>; // kScaleOperandA
using Mma = typename DefaultMmaFromSmem::Mma;
using IteratorB = typename Mma::IteratorB;
using WarpCount = typename Mma::WarpCount;
static_assert(WarpCount::kCount == kNumWarpsPerBlock, "");
using DefaultEpilogue = typename DefaultGemm::Epilogue;
using OutputTileIterator =
typename cutlass::epilogue::threadblock::PredicatedTileIterator<
typename DefaultEpilogue::OutputTileIterator::ThreadMap,
output_t>;
using OutputTileIteratorAccum =
typename cutlass::epilogue::threadblock::PredicatedTileIterator<
typename DefaultEpilogue::OutputTileIterator::ThreadMap,
output_accum_t>;
};
/// Define the kernel in terms of the default kernel
using FMHAKernel = kernel::FMHAGrouped<
MM0,
MM1,
scalar_t,
accum_t,
output_t,
output_accum_t,
kSingleValueIteration,
GroupScheduleMode_
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace kernel
} // namespace gemm
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////