-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
257 lines (213 loc) · 9.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import argparse
import random
import math
import logging
import os.path as osp
import time
import datetime
import os
import numpy as np
import paddle
from paddle.io import DataLoader
from utils.options import dict2str, parse
from utils.logger import get_root_logger, MessageLogger
from utils.misc import get_time_str, make_exp_dirs, mkdir_and_rename
from dataset import Dataset_GaussianDenoising
from models.image_restoration_model import ImageCleanModel
def parse_options(is_train=True):
parser = argparse.ArgumentParser()
parser.add_argument(
'-opt', type=str, required=True, help='Path to option YAML file.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument("--resume", type=str, default=None)
args = parser.parse_args()
opt = parse(args.opt, is_train=is_train)
# distributed settings
opt['dist'] = False
print('Disable distributed.', flush=True)
opt['rank'] = 0
opt['world_size'] = 1
# random seed
seed = opt.get('manual_seed')
if seed is None:
seed = random.randint(1, 10000)
opt['manual_seed'] = seed
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
return opt, args
def init_loggers(opt):
os.makedirs(opt['path']['log'], exist_ok=True)
log_file = osp.join(opt['path']['log'],
f"train_{opt['name']}.log")
logger = get_root_logger(
logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(dict2str(opt))
return logger
def create_train_val_dataloader(opt, logger):
# create train and val dataloaders
local_rank = paddle.distributed.ParallelEnv().local_rank
train_loader, val_loader = None, None
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
train_set = Dataset_GaussianDenoising(dataset_opt)
batch_sampler = paddle.io.DistributedBatchSampler(
train_set, batch_size=dataset_opt['batch_size_per_gpu'], shuffle=True, drop_last=True)
train_loader = DataLoader(dataset=train_set,
batch_sampler=batch_sampler,
num_workers=4)
num_iter_per_epoch = math.ceil(len(train_loader) * dataset_enlarge_ratio)
total_iters = int(opt['train']['total_iter'])
total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
if local_rank == 0:
logger.info(
'Training statistics:'
f'\n\tNumber of train images: {len(train_set)}'
f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
f'\n\tWorld size (gpu number): {opt["world_size"]}'
f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')
elif phase == 'val':
val_set = Dataset_GaussianDenoising(dataset_opt)
batch_sampler = paddle.io.DistributedBatchSampler(
val_set, batch_size=1, shuffle=False, drop_last=False)
val_loader = DataLoader(dataset=val_set,
batch_sampler=batch_sampler,
num_workers=0)
if local_rank == 0:
logger.info(
f'Number of val images/folders in {dataset_opt["name"]}: '
f'{len(val_set)}')
else:
raise ValueError(f'Dataset phase {phase} is not recognized.')
return train_loader, val_loader, total_epochs, total_iters, num_iter_per_epoch
def main():
opt, args = parse_options(is_train=True)
nranks = paddle.distributed.ParallelEnv().nranks
local_rank = paddle.distributed.ParallelEnv().local_rank
if nranks > 1:
# Initialize parallel environment if not done.
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
):
paddle.distributed.init_parallel_env()
opt['world_size'] = nranks
# mkdir for experiments and logger
# if local_rank == 0:
# make_exp_dirs(opt)
# if opt['logger'].get('use_tb_logger') and 'debug' not in opt[
# 'name'] and opt['rank'] == 0:
# mkdir_and_rename(osp.join('tb_logger', opt['name']))
# initialize loggers
logger = init_loggers(opt)
model = ImageCleanModel(opt)
# create train and validation dataloaders
result = create_train_val_dataloader(opt, logger)
train_loader, val_loader, total_epochs, total_iters, num_iter_per_epoch = result
start_epoch = 0
current_iter = 0
if args.resume is not None:
state_dict = paddle.load(args.resume+".pdparams")
model.net_g.set_state_dict(state_dict)
state_dict = paddle.load(args.resume + ".pdopt")
model.optimizer_g.set_state_dict(state_dict)
start_epoch = args.resume.split('/')[-1].split('_')[0]
start_epoch = int(start_epoch) + 1
current_iter = start_epoch * num_iter_per_epoch
msg_logger = MessageLogger(opt, current_iter)
# training
if local_rank == 0:
logger.info(
f'Start training from epoch: {start_epoch}, iter: {current_iter}')
data_time, iter_time = time.time(), time.time()
start_time = time.time()
iters = opt['datasets']['train'].get('iters')
batch_size = opt['datasets']['train'].get('batch_size_per_gpu')
mini_batch_sizes = opt['datasets']['train'].get('mini_batch_sizes')
gt_size = opt['datasets']['train'].get('gt_size')
mini_gt_sizes = opt['datasets']['train'].get('gt_sizes')
groups = np.array([sum(iters[0:i + 1]) for i in range(0, len(iters))])
logger_j = [True] * len(groups)
scale = opt['scale']
epoch = start_epoch
best_metric = 0
while current_iter <= total_iters:
for idx, train_data in enumerate(train_loader):
current_iter += 1
if current_iter > total_iters:
break
### ------Progressive learning ---------------------
j = ((current_iter > groups) != True).nonzero()[0]
if len(j) == 0:
bs_j = len(groups) - 1
else:
bs_j = j[0]
mini_gt_size = mini_gt_sizes[bs_j]
mini_batch_size = mini_batch_sizes[bs_j]
if logger_j[bs_j] and local_rank == 0:
logger.info('\n Updating Patch_Size to {} and Batch_Size to {} \n'.format(mini_gt_size,
mini_batch_size))
logger_j[bs_j] = False
lq = train_data['lq']
gt = train_data['gt']
if mini_batch_size < batch_size:
indices = random.sample(range(0, batch_size), k=mini_batch_size)
lq = lq[indices]
gt = gt[indices]
if mini_gt_size < gt_size:
x0 = int((gt_size - mini_gt_size) * random.random())
y0 = int((gt_size - mini_gt_size) * random.random())
x1 = x0 + mini_gt_size
y1 = y0 + mini_gt_size
lq = lq[:, :, x0:x1, y0:y1]
gt = gt[:, :, x0 * scale:x1 * scale, y0 * scale:y1 * scale]
###-------------------------------------------
model.feed_train_data({'lq': lq, 'gt': gt})
model.optimize_parameters(current_iter)
iter_time = time.time() - iter_time
# log
if current_iter % opt['logger']['print_freq'] == 0 and local_rank == 0:
log_vars = {'epoch': epoch, 'iter': current_iter}
log_vars.update({'lrs': model.get_current_learning_rate()})
log_vars.update({'time': iter_time, 'data_time': data_time})
log_vars.update(model.get_current_log())
msg_logger(log_vars)
data_time = time.time()
iter_time = time.time()
if local_rank == 0:
# save models and training states
logger.info(f'Saving models and training states on epoch {epoch}.')
model.save()
# validation
rgb2bgr = opt['val'].get('rgb2bgr', True)
# wheather use uint8 image to compute metrics
use_image = opt['val'].get('use_image', True)
current_metric = model.validation(val_loader, current_iter,
opt['val']['save_img'], rgb2bgr, use_image)
if current_metric > best_metric:
best_metric = current_metric
logger.info(f'Saving best models and training states on epoch {epoch}.')
model.save(prefix_name='best')
epoch += 1
# end of epoch
if local_rank == 0:
consumed_time = str(
datetime.timedelta(seconds=int(time.time() - start_time)))
logger.info(f'End of training. Time consumed: {consumed_time}')
logger.info('Save the latest model.')
model.save() # -1 stands for the latest
if opt.get('val') is not None and local_rank == 0:
rgb2bgr = opt['val'].get('rgb2bgr', True)
use_image = opt['val'].get('use_image', True)
model.validation(val_loader, current_iter,
opt['val']['save_img'],
rgb2bgr=rgb2bgr,
use_image=use_image)
if __name__ == '__main__':
main()