-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexport_model.py
78 lines (60 loc) · 1.96 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import argparse
import yaml
import paddle
from models.archs.restormer_arch import Restormer
from utils.utils import load_pretrained_model
def parse_args():
parser = argparse.ArgumentParser(description='Model export.')
parser.add_argument(
'-opt', type=str, required=True, help='Path to option YAML file.')
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the exported model',
type=str,
default='./output')
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for export',
type=str,
default=None)
return parser.parse_args()
def main(args):
try:
from yaml import CLoader as Loader
except ImportError:
from yaml import Loader
x = yaml.load(open(args.opt, mode='r'), Loader=Loader)
s = x['network_g'].pop('type')
net = Restormer(**x['network_g'])
if args.model_path:
para_state_dict = paddle.load(args.model_path)
net.set_dict(para_state_dict)
print('Loaded trained params of model successfully.')
shape = [-1, 3, 256, 256]
new_net = net
new_net.eval()
new_net = paddle.jit.to_static(
new_net,
input_spec=[paddle.static.InputSpec(shape=shape, dtype='float32')])
save_path = os.path.join(args.save_dir, 'model')
paddle.jit.save(new_net, save_path)
# yml_file = os.path.join(args.save_dir, 'deploy.yaml')
# with open(yml_file, 'w') as file:
# transforms = cfg.export_config.get('transforms', [{
# 'type': 'Normalize'
# }])
# data = {
# 'Deploy': {
# 'transforms': transforms,
# 'model': 'model.pdmodel',
# 'params': 'model.pdiparams'
# }
# }
# yaml.dump(data, file)
print(f'Model is saved in {args.save_dir}.')
if __name__ == '__main__':
args = parse_args()
main(args)