Epoch: [0][0/45] Time 28.807 (28.807) Data 21.450 (21.450) Loss 1.1422 (1.1422) MAE 0.999 (0.999) Epoch: [0][1/45] Time 26.848 (27.827) Data 20.083 (20.767) Loss 1.0313 (1.0868) MAE 0.987 (0.993) Epoch: [0][2/45] Time 27.646 (27.767) Data 20.691 (20.742) Loss 1.1087 (1.0941) MAE 1.014 (1.000) Epoch: [0][3/45] Time 29.390 (28.173) Data 22.002 (21.057) Loss 1.3756 (1.1645) MAE 1.085 (1.021) Epoch: [0][4/45] Time 26.924 (27.923) Data 20.051 (20.856) Loss 2.1051 (1.3526) MAE 1.381 (1.093) Epoch: [0][5/45] Time 27.716 (27.888) Data 20.783 (20.844) Loss 2.1518 (1.4858) MAE 1.397 (1.144) Epoch: [0][6/45] Time 28.262 (27.942) Data 21.522 (20.940) Loss 0.9792 (1.4134) MAE 0.948 (1.116) Epoch: [0][7/45] Time 28.068 (27.958) Data 21.137 (20.965) Loss 0.8590 (1.3441) MAE 0.902 (1.089) Epoch: [0][8/45] Time 29.235 (28.100) Data 22.270 (21.110) Loss 1.0692 (1.3136) MAE 0.911 (1.069) Epoch: [0][9/45] Time 28.205 (28.110) Data 21.270 (21.126) Loss 0.6756 (1.2498) MAE 0.732 (1.036) Epoch: [0][10/45] Time 29.010 (28.192) Data 21.960 (21.202) Loss 1.1030 (1.2364) MAE 1.016 (1.034) Epoch: [0][11/45] Time 27.504 (28.135) Data 20.835 (21.171) Loss 0.7654 (1.1972) MAE 0.802 (1.015) Epoch: [0][12/45] Time 29.047 (28.205) Data 21.977 (21.233) Loss 0.8732 (1.1723) MAE 0.822 (1.000) Epoch: [0][13/45] Time 30.272 (28.353) Data 23.173 (21.372) Loss 0.5653 (1.1289) MAE 0.677 (0.977) Epoch: [0][14/45] Time 29.510 (28.430) Data 22.414 (21.441) Loss 0.6675 (1.0982) MAE 0.757 (0.962) Epoch: [0][15/45] Time 28.929 (28.461) Data 22.322 (21.496) Loss 0.7052 (1.0736) MAE 0.780 (0.951) Epoch: [0][16/45] Time 26.796 (28.363) Data 19.834 (21.399) Loss 0.6238 (1.0471) MAE 0.715 (0.937) Epoch: [0][17/45] Time 28.416 (28.366) Data 21.340 (21.395) Loss 0.4276 (1.0127) MAE 0.590 (0.918) Epoch: [0][18/45] Time 28.966 (28.398) Data 22.160 (21.436) Loss 0.5343 (0.9875) MAE 0.667 (0.904) Epoch: [0][19/45] Time 30.154 (28.485) Data 23.285 (21.528) Loss 0.5359 (0.9650) MAE 0.651 (0.892) Epoch: [0][20/45] Time 27.476 (28.437) Data 20.515 (21.480) Loss 0.6020 (0.9477) MAE 0.707 (0.883) Epoch: [0][21/45] Time 26.555 (28.352) Data 19.966 (21.411) Loss 0.4617 (0.9256) MAE 0.617 (0.871) Epoch: [0][22/45] Time 27.779 (28.327) Data 20.728 (21.381) Loss 0.5162 (0.9078) MAE 0.646 (0.861) Epoch: [0][23/45] Time 27.967 (28.312) Data 21.024 (21.366) Loss 0.4457 (0.8885) MAE 0.595 (0.850) Epoch: [0][24/45] Time 26.955 (28.258) Data 20.064 (21.314) Loss 0.4235 (0.8699) MAE 0.585 (0.839) Epoch: [0][25/45] Time 29.360 (28.300) Data 22.146 (21.346) Loss 0.4335 (0.8531) MAE 0.580 (0.829) Epoch: [0][26/45] Time 27.466 (28.269) Data 20.710 (21.323) Loss 0.5166 (0.8407) MAE 0.650 (0.823) Epoch: [0][27/45] Time 27.659 (28.247) Data 20.919 (21.308) Loss 0.4279 (0.8259) MAE 0.605 (0.815) Epoch: [0][28/45] Time 26.863 (28.200) Data 20.118 (21.267) Loss 0.4284 (0.8122) MAE 0.603 (0.808) Epoch: [0][29/45] Time 26.760 (28.152) Data 20.171 (21.231) Loss 0.3970 (0.7984) MAE 0.564 (0.800) Epoch: [0][30/45] Time 26.988 (28.114) Data 20.282 (21.200) Loss 0.4777 (0.7880) MAE 0.610 (0.793) Epoch: [0][31/45] Time 27.537 (28.096) Data 20.809 (21.188) Loss 0.4413 (0.7772) MAE 0.600 (0.787) Epoch: [0][32/45] Time 27.713 (28.084) Data 20.754 (21.175) Loss 0.4224 (0.7664) MAE 0.591 (0.781) Epoch: [0][33/45] Time 28.144 (28.086) Data 21.075 (21.172) Loss 0.3373 (0.7538) MAE 0.510 (0.773) Epoch: [0][34/45] Time 27.433 (28.067) Data 20.827 (21.162) Loss 0.4358 (0.7447) MAE 0.580 (0.768) Epoch: [0][35/45] Time 28.767 (28.087) Data 21.460 (21.170) Loss 0.4014 (0.7352) MAE 0.542 (0.762) Epoch: [0][36/45] Time 28.622 (28.101) Data 21.594 (21.182) Loss 0.3988 (0.7261) MAE 0.540 (0.756) Epoch: [0][37/45] Time 26.750 (28.066) Data 20.193 (21.156) Loss 0.4446 (0.7187) MAE 0.584 (0.751) Epoch: [0][38/45] Time 27.168 (28.043) Data 20.343 (21.135) Loss 0.4282 (0.7113) MAE 0.560 (0.746) Epoch: [0][39/45] Time 26.667 (28.008) Data 20.074 (21.108) Loss 0.4163 (0.7039) MAE 0.588 (0.742) Epoch: [0][40/45] Time 26.819 (27.979) Data 20.242 (21.087) Loss 0.4148 (0.6968) MAE 0.553 (0.738) Epoch: [0][41/45] Time 28.329 (27.988) Data 21.439 (21.096) Loss 0.4015 (0.6898) MAE 0.598 (0.734) Epoch: [0][42/45] Time 29.131 (28.014) Data 22.346 (21.125) Loss 0.4827 (0.6850) MAE 0.609 (0.731) Epoch: [0][43/45] Time 26.441 (27.979) Data 19.741 (21.093) Loss 0.3543 (0.6775) MAE 0.526 (0.727) Epoch: [0][44/45] Time 13.212 (27.650) Data 9.797 (20.842) Loss 0.3276 (0.6736) MAE 0.528 (0.725) Validation: [0/6] Time 23.425 (23.425) Loss 0.5935 (0.5935) MAE 0.736 (0.736) Validation: [1/6] Time 24.361 (23.893) Loss 0.5134 (0.5535) MAE 0.660 (0.698) Validation: [2/6] Time 22.521 (23.436) Loss 0.6047 (0.5705) MAE 0.731 (0.709) Validation: [3/6] Time 25.423 (23.932) Loss 0.5812 (0.5732) MAE 0.712 (0.710) Validation: [4/6] Time 25.616 (24.269) Loss 0.5098 (0.5605) MAE 0.665 (0.701) Validation: [5/6] Time 13.435 (22.463) Loss 0.5318 (0.5577) MAE 0.676 (0.698) * MAE 0.698 Epoch: [1][0/45] Time 7.170 (7.170) Data 0.030 (0.030) Loss 0.3952 (0.3952) MAE 0.579 (0.579) Epoch: [1][1/45] Time 7.104 (7.137) Data 0.029 (0.029) Loss 0.5019 (0.4486) MAE 0.596 (0.587) Epoch: [1][2/45] Time 7.163 (7.146) Data 0.042 (0.033) Loss 0.4190 (0.4387) MAE 0.572 (0.582) Epoch: [1][3/45] Time 7.119 (7.139) Data 0.034 (0.034) Loss 0.3264 (0.4107) MAE 0.513 (0.565) Epoch: [1][4/45] Time 6.793 (7.070) Data 0.034 (0.034) Loss 0.3935 (0.4072) MAE 0.527 (0.557) Epoch: [1][5/45] Time 7.113 (7.077) Data 0.028 (0.033) Loss 0.3717 (0.4013) MAE 0.555 (0.557) Epoch: [1][6/45] Time 7.064 (7.075) Data 0.034 (0.033) Loss 0.4180 (0.4037) MAE 0.580 (0.560) Epoch: [1][7/45] Time 6.703 (7.029) Data 0.033 (0.033) Loss 0.4279 (0.4067) MAE 0.577 (0.562) Epoch: [1][8/45] Time 6.838 (7.007) Data 0.029 (0.032) Loss 0.3737 (0.4031) MAE 0.536 (0.560) Epoch: [1][9/45] Time 6.932 (7.000) Data 0.026 (0.032) Loss 0.4235 (0.4051) MAE 0.573 (0.561) Epoch: [1][10/45] Time 6.832 (6.985) Data 0.026 (0.031) Loss 0.3665 (0.4016) MAE 0.535 (0.558) Epoch: [1][11/45] Time 6.729 (6.963) Data 0.025 (0.031) Loss 0.3709 (0.3990) MAE 0.552 (0.558) Epoch: [1][12/45] Time 6.972 (6.964) Data 0.025 (0.030) Loss 0.4126 (0.4001) MAE 0.571 (0.559) Epoch: [1][13/45] Time 6.939 (6.962) Data 0.033 (0.030) Loss 0.4212 (0.4016) MAE 0.552 (0.558) Epoch: [1][14/45] Time 6.872 (6.956) Data 0.035 (0.031) Loss 0.4076 (0.4020) MAE 0.544 (0.557) Epoch: [1][15/45] Time 7.229 (6.973) Data 0.026 (0.030) Loss 0.3912 (0.4013) MAE 0.558 (0.557) Epoch: [1][16/45] Time 6.721 (6.958) Data 0.030 (0.030) Loss 0.4010 (0.4013) MAE 0.561 (0.558) Epoch: [1][17/45] Time 6.763 (6.948) Data 0.025 (0.030) Loss 0.3673 (0.3994) MAE 0.546 (0.557) Epoch: [1][18/45] Time 6.815 (6.941) Data 0.028 (0.030) Loss 0.3550 (0.3971) MAE 0.519 (0.555) Epoch: [1][19/45] Time 6.789 (6.933) Data 0.026 (0.030) Loss 0.3852 (0.3965) MAE 0.546 (0.555) Epoch: [1][20/45] Time 7.045 (6.938) Data 0.028 (0.030) Loss 0.3508 (0.3943) MAE 0.523 (0.553) Epoch: [1][21/45] Time 6.685 (6.927) Data 0.026 (0.030) Loss 0.3622 (0.3928) MAE 0.529 (0.552) Epoch: [1][22/45] Time 6.930 (6.927) Data 0.026 (0.029) Loss 0.3819 (0.3924) MAE 0.547 (0.552) Epoch: [1][23/45] Time 6.969 (6.929) Data 0.031 (0.029) Loss 0.4475 (0.3947) MAE 0.548 (0.552) Epoch: [1][24/45] Time 7.075 (6.935) Data 0.030 (0.030) Loss 0.3654 (0.3935) MAE 0.511 (0.550) Epoch: [1][25/45] Time 7.061 (6.939) Data 0.030 (0.030) Loss 0.3537 (0.3920) MAE 0.514 (0.549) Epoch: [1][26/45] Time 6.690 (6.930) Data 0.025 (0.029) Loss 0.3701 (0.3911) MAE 0.528 (0.548) Epoch: [1][27/45] Time 6.970 (6.932) Data 0.029 (0.029) Loss 0.3711 (0.3904) MAE 0.527 (0.547) Epoch: [1][28/45] Time 7.017 (6.935) Data 0.025 (0.029) Loss 0.2952 (0.3871) MAE 0.474 (0.545) Epoch: [1][29/45] Time 6.489 (6.920) Data 0.024 (0.029) Loss 0.3046 (0.3844) MAE 0.482 (0.543) Epoch: [1][30/45] Time 6.738 (6.914) Data 0.025 (0.029) Loss 0.3534 (0.3834) MAE 0.525 (0.542) Epoch: [1][31/45] Time 6.898 (6.913) Data 0.027 (0.029) Loss 0.3286 (0.3817) MAE 0.511 (0.541) Epoch: [1][32/45] Time 6.787 (6.910) Data 0.025 (0.029) Loss 0.3261 (0.3800) MAE 0.525 (0.541) Epoch: [1][33/45] Time 7.487 (6.926) Data 0.024 (0.029) Loss 0.3819 (0.3801) MAE 0.538 (0.540) Epoch: [1][34/45] Time 6.875 (6.925) Data 0.030 (0.029) Loss 0.3107 (0.3781) MAE 0.489 (0.539) Epoch: [1][35/45] Time 7.031 (6.928) Data 0.024 (0.028) Loss 0.4032 (0.3788) MAE 0.534 (0.539) Epoch: [1][36/45] Time 7.157 (6.934) Data 0.027 (0.028) Loss 0.2801 (0.3761) MAE 0.497 (0.538) Epoch: [1][37/45] Time 6.872 (6.933) Data 0.024 (0.028) Loss 0.3881 (0.3764) MAE 0.543 (0.538) Epoch: [1][38/45] Time 7.104 (6.937) Data 0.028 (0.028) Loss 0.3667 (0.3762) MAE 0.546 (0.538) Epoch: [1][39/45] Time 7.078 (6.940) Data 0.030 (0.028) Loss 0.3839 (0.3764) MAE 0.506 (0.537) Epoch: [1][40/45] Time 6.926 (6.940) Data 0.035 (0.029) Loss 0.3633 (0.3760) MAE 0.524 (0.537) Epoch: [1][41/45] Time 6.791 (6.937) Data 0.023 (0.028) Loss 0.3300 (0.3749) MAE 0.512 (0.536) Epoch: [1][42/45] Time 6.761 (6.932) Data 0.024 (0.028) Loss 0.3634 (0.3747) MAE 0.530 (0.536) Epoch: [1][43/45] Time 6.807 (6.930) Data 0.025 (0.028) Loss 0.4238 (0.3758) MAE 0.538 (0.536) Epoch: [1][44/45] Time 3.415 (6.851) Data 0.013 (0.028) Loss 0.3238 (0.3752) MAE 0.522 (0.536) Validation: [0/6] Time 3.061 (3.061) Loss 0.4465 (0.4465) MAE 0.581 (0.581) Validation: [1/6] Time 3.109 (3.085) Loss 0.3984 (0.4225) MAE 0.546 (0.563) Validation: [2/6] Time 3.003 (3.057) Loss 0.3881 (0.4110) MAE 0.558 (0.562) Validation: [3/6] Time 3.005 (3.044) Loss 0.3427 (0.3939) MAE 0.509 (0.548) Validation: [4/6] Time 3.121 (3.060) Loss 0.3937 (0.3939) MAE 0.566 (0.552) Validation: [5/6] Time 1.572 (2.812) Loss 0.4790 (0.4024) MAE 0.605 (0.557) * MAE 0.557 ---------Evaluate Model on Test Set--------------- Validation: [0/6] Time 27.193 (27.193) Loss 0.4585 (0.4585) MAE 0.599 (0.599) Validation: [1/6] Time 27.790 (27.491) Loss 0.3181 (0.3883) MAE 0.500 (0.550) Validation: [2/6] Time 27.160 (27.381) Loss 0.4632 (0.4133) MAE 0.592 (0.564) Validation: [3/6] Time 29.348 (27.873) Loss 0.3841 (0.4060) MAE 0.541 (0.558) Validation: [4/6] Time 33.030 (28.904) Loss 0.3865 (0.4021) MAE 0.509 (0.548) Validation: [5/6] Time 19.275 (27.299) Loss 0.3324 (0.3951) MAE 0.516 (0.545) ** MAE 0.545