-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrim a Binary Search Tree.cpp
80 lines (52 loc) · 1.89 KB
/
Trim a Binary Search Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
PROBLEM:
Given the root of a binary search tree and the lowest and highest boundaries as low and high, trim the tree so that all its elements lies in [low, high].
Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant).
It can be proven that there is a unique answer.
Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.
Example 1:
Input: root = [1,0,2], low = 1, high = 2
Output: [1,null,2]
Example 2:
Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
Output: [3,2,null,1]
Example 3:
Input: root = [1], low = 1, high = 2
Output: [1]
Example 4:
Input: root = [1,null,2], low = 1, high = 3
Output: [1,null,2]
Example 5:
Input: root = [1,null,2], low = 2, high = 4
Output: [2]
Constraints:
1. The number of nodes in the tree in the range [1, 104].
2. 0 <= Node.val <= 104
3. The value of each node in the tree is unique.
4. root is guaranteed to be a valid binary search tree.
5. 0 <= low <= high <= 104
SOLUTION:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(root==NULL)
return NULL;
if(root->val<low)
return trimBST(root->right,low,high);
if(root->val>high)
return trimBST(root->left,low,high);
root->left = trimBST(root->left,low,high);
root->right = trimBST(root->right,low,high);
return root;
}
};